Skip to main content
Log in

Formation of Two-ring Polycyclic Aromatic Hydrocarbons via the Recombination of Benzyl and Propargyl Radicals under the Circumstellar Envelopes Conditions of Asymptotic Giant Branch Stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The mechanisms and kinetics of the formation of two-ring polycyclic aromatic hydrocarbons via the recombination of benzyl (C7H7) and propargyl (C3H3) radicals under the circumstellar envelopes’ conditions of carbon-rich stars of the asymptotic giant branch, as well as their combustion, were refined on the basis of high-level quantum chemistry methods and the advanced transition state theory. Based on the constructed diagrams of potential energy surfaces and the calculated temperature- and pressure-dependence rate constants of the processes, the reaction pathways and their relative contributions to the composition of the final products are revealed. It is shown that under the conditions of the circumstellar envelopes of the asymptotic giant branch stars, stabilization of the initial complexes C10H10, in contrast to the combustion flame, does not occur, which contributes to an increase in the yield of two-cyclic reaction products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. G. Rawlings, A. J. Adamson, C. C. M. Marshall, and P. J. Sarre, Mon. Not. R. Astron. Soc. 485, 3398 (2019).

    Article  ADS  Google Scholar 

  2. R. Ruiterkamp, T. Halasinski, F. Salama, B. H. Foing, L. J. Allamandola, W. Schmidt, and P. Ehrenfreund, Astron. Astrophys. 390, 1153 (2002).

    Article  ADS  Google Scholar 

  3. M. Tsuge, C.-Y. Tseng, and Y.-P. Lee, Phys. Chem. Chem. Phys. 20, 5344 (2018).

    Article  Google Scholar 

  4. N. L. J. Cox, J. Cami, A. Farhang, J. Smoker, A. Monreal-Ibero, R. Lallement, P. J. Sarre, C. C. M. Marshall, K. T. Smith, and C. J. Evans, Astron. Astrophys. 606, A76 (2017).

    Article  Google Scholar 

  5. R. Ruiterkamp, N. L. J. Cox, M. Spaans, L. Kaper, B. H. Foing, F. Salama, and P. Ehrenfreund, Astron. Astrophys. 432, 515 (2005).

    Article  ADS  Google Scholar 

  6. C. Boersma, J. Bregman, and L. J. Allamandola, Astrophys. J. 858, 67 (2018).

    Article  ADS  Google Scholar 

  7. A. G. Tielens, Rev. Mod. Phys. 85, 1021 (2013).

    Article  ADS  Google Scholar 

  8. M. Kalpana, E. Babu, D. Mani, R. Tripathi, and N. Bhandari, Planet. Space Sci. 198, 105177 (2021).

  9. R. I. Kaiser and N. Hansen, J. Phys. Chem. A 125, 3826 (2021).

    Article  Google Scholar 

  10. A. Leger and J. L. Puget, Astron. Astrophys. 137, L5 (1984).

    ADS  Google Scholar 

  11. R. I. Kaiser, D. S. N. Parker, and A. M. Mebel, Ann. Rev. Phys. Chem. 66, 43 (2015).

    Article  ADS  Google Scholar 

  12. W. W. Duley, Faraday Discuss. 133, 415 (2006).

    Article  ADS  Google Scholar 

  13. N. L. J. Cox, J. Cami, L. Kaper, P. Ehrenfreund, B. H. Foing, B. B. Ochsendorf, S. H. M. van Hooff, and F. Salama, Astron. Astrophys. 569, A117 (2014).

    Article  ADS  Google Scholar 

  14. M. Tsuge, M. Bahou, Y.-J. Wu, L. Allamandola, and Y.-P. Lee, Astrophys. J. 825, 96 (2016).

    Article  ADS  Google Scholar 

  15. H.-S. Kim, D. R. Wagner, and R. J. Saykally, Phys. Rev. Lett. 86, 5691 (2001).

    Article  ADS  Google Scholar 

  16. R. Zenobi, J.-M. Philippoz, R. N. Zare, and P. R. Buseck, Science (Washington, DC, U. S.) 246, 1026 (1989).

    Article  ADS  Google Scholar 

  17. Y. Wang, Y. Huang, C. M. O. D. Alexander, M. Fogel, and G. Cody, Geochim. Cosmochim. Acta 69, 3711 (2005).

    Article  ADS  Google Scholar 

  18. A. G. Tielens, Ann. Rev. Astron. Astrophys. 46, 289 (2008).

    Article  ADS  Google Scholar 

  19. A. Bergantini and R.I. Kaiser, Chem 1, 822 (2016).

    Article  Google Scholar 

  20. S. A. Sanford, J. Aléon, C. M. Alexander, T. Araki, S. Bajt, G. A. Baratta, J. Borg, J. P. Bradley, D. E. Brownlee, J. R. Brucato, and M. J. Burchell, Science (Washington, DC, U. S.) 314, 1720 (2006).

    Article  ADS  Google Scholar 

  21. D. S. McKay, E. K. Gibson, Jr., K. L. Thomas-Keprta, H. Vali, C. S. Romanek, S. J. Clemett, X. D. Chillier, C. R. Maechling, and R. N. Zare, Science (Washington, DC, U. S.) 273, 924 (1996).

    Article  ADS  Google Scholar 

  22. B. A. McGuire, A. M. Burkhardt, S. Kalenskii, C. N. Shingledecker, A. J. Remijan, E. Herbst, and M. C. McCarthy, Science (Washington, DC, U. S.) 359, 202 (2018).

    Article  ADS  Google Scholar 

  23. D. S. N. Parker, F. Zhang, Y. S. Kim, R. I. Kaiser, A. Landera, V. V. Kislov, A. M. Mebel, and A. G. Tielens, Proc. Natl. Acad. Sci. U. S. A. 109, 53 (2012).

    Article  ADS  Google Scholar 

  24. A. M. Mebel, A. Landera, and R. I. Kaiser, J. Phys. Chem. A 121, 901 (2017).

    Article  Google Scholar 

  25. M. Frenklach and E. D. Feigelson, Astrophys. J. 341, 372 (1989).

    Article  ADS  Google Scholar 

  26. M. Frenklach, Phys. Chem. Chem. Phys. 4, 2028 (2002).

    Article  Google Scholar 

  27. I. Cherchneff, J. R. Barker, and A. G. Tielens, Astrophys. J. 401, 269 (1992).

    Article  ADS  Google Scholar 

  28. I. Cherchneff, EAS Publ. Ser. 46, 177 (2011).

    Google Scholar 

  29. M. Frenklach, D. W. Clary, W. C. Gardiner, Jr., and S. E. Stein, in Proceedings of the 20th International Symposium on Combustion (1985), Vol. 20, p. 887.

  30. M. Frenklach, Proc. Combust. Inst. 22, 1075 (1988).

    Article  Google Scholar 

  31. V. V. Kislov, N. I. Islamova, A. M. Kolker, S. H. Lin, and A. M. Mebel, J. Chem. Theory Comput. 1, 908 (2005).

    Article  Google Scholar 

  32. A. M. Mebel, Y. Georgievskii, A. W. Jasper, and S. J. Klippenstein, Proc. Combust. Inst. 36, 919 (2017).

    Article  Google Scholar 

  33. M. Frenklach, R. I. Singh, and A. M. Mebel, Proc. Combust. Inst. 37, 969 (2019).

    Article  Google Scholar 

  34. L. Zhao, R. I. Kaiser, W. Lu, B. Xu, M. Ahmed, A. N. Morozov, A. M. Mebel, A. H. Howlader, and S. F. Wnuk, Nat. Commun. 10, 3689 (2019).

    Article  ADS  Google Scholar 

  35. B. Shukla, A. Susa, A. Miyoshi, and M. Koshi, J. Phys. Chem. A 112, 2362 (2008).

    Article  Google Scholar 

  36. V. S. Krasnoukhov, D. P. Porfiriev, I. P. Zavershinskiy, V. N. Azyazov, and A. M. Mebel, J. Phys. Chem. A 121, 9191 (2017).

    Article  Google Scholar 

  37. S. Doddipatla, G. R. Galimova, H. Wei, A. M. Thomas, C. He, Z. Yang, A. N. Morozov, C. N. Shingledecker, A. M. Mebel, and R. I. Kaiser, Sci. Adv. 7, eabd4044 (2021).

  38. P. M. Holt and J. A. Kerr, Int. J. Chem. Kinet. 9, 185 (1977).

    Article  Google Scholar 

  39. D. Robaugh and W. Tsang, J. Phys. Chem. 90, 4159 (1986).

    Article  Google Scholar 

  40. I. V. Tokmakov and M. C. Lin, Int. J. Chem. Kinet. 33, 633 (2001).

    Article  Google Scholar 

  41. J. Park and M. C. Lin, Int. J. Chem. Kinet. 33, 803 (2001).

    Article  Google Scholar 

  42. V. V. Kislov and A. M. Mebel, J. Phys. Chem. A 111, 3922 (2007).

    Article  Google Scholar 

  43. M. B. Colket and D. J. Seery, Proc. Combust. Inst. 25, 883 (1994).

    Article  Google Scholar 

  44. N. M. Marinov, W. J. Pitz, C. K. Westbrook, A. E. Lutz, A. M. Vincitore, and S. M. Senkan, Proc. Combust. Inst. 27, 605 (1998).

    Article  Google Scholar 

  45. A. Matsugi and A. Miyoshi, Int. J. Chem. Kinet. 44, 206 (2011).

    Article  Google Scholar 

  46. C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  47. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  48. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  ADS  Google Scholar 

  49. L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998).

    Article  ADS  Google Scholar 

  50. L. A. Curtiss, K. Raghavachari, P. C. Redfern, A. G. Baboul, and J. A. Pople, Chem. Phys. Lett. 314, 101 (1994).

    Article  ADS  Google Scholar 

  51. A. G. Baboul, L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 110, 7650 (1999).

    Article  ADS  Google Scholar 

  52. J. A. Miller, S. J. Klippenstein, Y. Georgievskii, L. B. Harding, W. D. Allen, and A. C. Simmonett, J. Phys. Chem. A 114, 4881 (2010).

    Article  Google Scholar 

  53. P. Celani and H.-J. Werner, J. Chem. Phys. 112, 5546 (2000).

    Article  ADS  Google Scholar 

  54. T. Shiozaki, G. Werner, P. Celani, and H.-J. Werner, J. Chem. Phys. 135, 081106 (2011).

  55. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).

    Article  ADS  Google Scholar 

  56. M. J. Frisch et al., Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).

    Google Scholar 

  57. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schutz, Wiley Interdiscipl. Rev.: Comput. Mol. Sci. 2, 242 (2012).

    Google Scholar 

  58. R. A. Marcus, J. Chem. Phys. 20, 359 (1952).

    Article  ADS  Google Scholar 

  59. W. H. Miller, J. Am. Chem. Soc. 101, 6810 (1979).

    Article  Google Scholar 

  60. S. J. Klippenstein, J. Chem. Phys. 96, 367 (1992).

    Article  ADS  Google Scholar 

  61. Y. Georgievskii, J. A. Miller, and S. J. Klippenstein, Phys. Chem. Chem. Phys. 9, 4259 (2007).

    Article  Google Scholar 

  62. Y. Georgievskii and S. J. Klippenstein, J. Chem. Phys. 118, 5442 (2003).

    Article  ADS  Google Scholar 

  63. S. J. Klippenstein and J. I. Cline, J. Chem. Phys. 103, 5451 (1995).

    Article  ADS  Google Scholar 

  64. L. B. Harding, S. J. Klippenstein, and Y. Georgievskii, J. Phys. Chem. A 111, 3789 (2007).

    Article  Google Scholar 

  65. A. N. Morozov and A. M. Mebel, J. Phys. Chem. A 123, 1720 (2019).

    Article  Google Scholar 

  66. Y. Georgievskii, J. A. Miller, M. P. Burke, and S. J. Klippenstein, J. Phys. Chem. A 117, 12146 (2013).

    Article  Google Scholar 

  67. Y. Georgievskii and S. J. Klippenstein, PAPR. https://tcg.cse.anl.gov/papr. Accessed 2015.

  68. A. M. Mebel, Y. Georgievskii, A. W. Jasper, and S. J. Klippenstein, Faraday Discuss. 195, 637 (2016).

    Article  ADS  Google Scholar 

  69. J. Troe, J. Chem. Phys. 66, 4745 (1977).

    Article  ADS  Google Scholar 

  70. P. E. M. Siegbahn, J. Almlof, A. Heiberg, and B. O. Roos, J. Chem. Phys. 74, 2384 (1981).

    Article  ADS  Google Scholar 

  71. T. H. Dunning, Jr., J. Chem. Phys. 53, 2823 (1970).

    Article  ADS  Google Scholar 

  72. T. H. Dunning and P. J. Hay, Methods of Electronic Structure Theory (Springer, Boston, MA, 1977), Vol. 3, p. 1.

    Google Scholar 

  73. R. I. Kaiser, L. Zhao, W. Lu, M. Ahmed, V. S. Krasnoukhov, V. N. Azyazov, and A. M. Mebel, Nat. Commun. 13, 786 (2022).

    Article  ADS  Google Scholar 

  74. G. Santoro, L. Martínez, K. Lauwaet, M. Accolla, G. Tajuelo-Castilla, P. Merino, J. M. Sobrado, R. J. Peláez, V. J. Herrero, I. Tanarro, and Á. Mayoral, Astrophys. J. 895, 97 (2020).

    Article  ADS  Google Scholar 

  75. C. W. Zhou, A. Farooq, L. Yang, and A. M. Mebel, Prog. Energy Combust. Sci. 90, 100983 (2022).

  76. L. Ruwe, K. Moshammer, N. Hansen, and K. Kohse-Höinghaus, Combust. Flame 175, 34 (2017).

    Article  Google Scholar 

  77. I. Cherchneff, Astron. Astrophys. 545, A12 (2012).

    Article  ADS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR according to the research project no. 20-33-90137 in Samara University, and also was funded by Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-597) at the Samara Branch of P.N. Lebedev Physical Institute of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Krasnoukhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnoukhov, V.S., Pivovarov, P.S., Zagidullin, M.V. et al. Formation of Two-ring Polycyclic Aromatic Hydrocarbons via the Recombination of Benzyl and Propargyl Radicals under the Circumstellar Envelopes Conditions of Asymptotic Giant Branch Stars. Astron. Rep. 66, 811–826 (2022). https://doi.org/10.1134/S1063772922090074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922090074

Keywords:

Navigation