Skip to main content
Log in

Theoretical Investigation on Mechanism, Thermochemistry, and Kinetics of the Gas-phase Reaction of 2-Propargyl Radical with Formaldehyde

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Gas-phase mechanism and kinetics of the reactions of the 2-propargyl radical(H2CCCH), an important intermediate in combustion processes, with formaldehyde were investigated using ab initio molecular orbital theory at the coupled-cluster CCSD(T)//B3LYP/6-311++G(3df, 2p) method in conjunction with transition state theory(TST), variational transition state theory(VTST) and Rice-Ramsperger-Kassel-Marcus(RRKM) calculations for rate constants. The potential energy surface(PES) constructed shows that the H2CCCH+HCHO reaction has six main entrances, including two H-abstraction and four additional channels, in which the former is energetically more favorable. The H-abstraction channels slide down to two quite weak pre-complexes COM-01(−9.3 kJ/mol) and COM-02(−8.1 kJ/mol) before going via energy barriers of 71.3(T0/P1) and 63.9 kJ/mol(T0/P2), respectively. Two post-complexes, COM-1(−17.8 kJ/mol) and COM-2(−23.4 kJ/mol) created just after coming out from T0/P1 and T0/P2, respectively, can easily be decomposed via barrier-less processes yielding H2CCCH2+CHO(P1, −12.4 kJ/mol) and HCCCH3+CHO(P2, −16.5 kJ/mol), respectively. The additional channels occur initially by formation of four intermediate states, H2CCCHCH2O(I1, 1.1 kJ/mol), HCCCH2CH2O(I3, 4.5 kJ/mol), H2CCCHOCH2(I4, 10.2 kJ/mol), and HCCCH2OCH2(I6, 19.1 kJ/mol) via energy barriers of 66.3, 59.2, 112.2, and 98.6 kJ/mol at T0/1, T0/3, T0/4, and T0/6, respectively. Of which two channels producing I4 and I6 can be ignored due to coming over the high barriers T0/4 and T0/6, respectively. The rate constants and product branching ratios for the low-energy channels calculated show that the H2CCCH+HCHO reaction is almost pressure-independent. Although the H2CCCH+HCHO→I1 and H2CCCH+HCHO→I3 channels become dominant at low temperature, however, they are less competitive channels at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahman K., Clin. Interv. Agin., 2007, 2, 219

    CAS  Google Scholar 

  2. Herbst E., Ann. Rev. Phys. Chem., 1995, 46, 27

    Article  CAS  Google Scholar 

  3. Bettens R. P. A., Herbst E., J. Astrophys., 1996, 468, 686

    Article  CAS  Google Scholar 

  4. Pope C. J., Miller J. A., Proceed. Combust. Inst., 2000, 28, 1519

    Article  CAS  Google Scholar 

  5. Kaiser R. I., Lee Y. T., Suits A. G., J. Chem. Phys., 1996, 105, 8705

    Article  CAS  Google Scholar 

  6. Canosa-Mas C. E., Ellis M., Frey H. M., Walsh R., Int. J. Chem. Kinet., 1984, 16, 1103

    Article  CAS  Google Scholar 

  7. Joblin C., Tielens A. G. G. M., Cherchneff I., Europ. Astro. Soc. Pub. Seri., 2011, 46, 177

    Google Scholar 

  8. D’Anna A., Violi A., J. Ener. Fuel., 2005, 19, 79

    Article  CAS  Google Scholar 

  9. Miller J. A., Klippenstein S. J., J. Phys. Chem. A, 2001, 105, 7254

    Article  CAS  Google Scholar 

  10. Miller J. A., Klippenstein S. J., J. Phys. Chem. A, 2003, 107, 7783

    Article  CAS  Google Scholar 

  11. Park J., Nguyen H. M. T., Xu Z. F., Lin M. C., J. Phys. Chem. A, 2009, 113, 12199

    Article  CAS  PubMed  Google Scholar 

  12. Geppert W. D., Eskola A. J., Timonen R. S., Halonen L., J. Phys. Chem. A, 2004, 108, 4232

    Article  CAS  Google Scholar 

  13. Wang X., Song J., Gang L., Li Z., J. Phys. Chem. A, 2019, 123, 1015

    Article  CAS  PubMed  Google Scholar 

  14. Pham T. V., Int. J. Sci. Eng. App., 2016, 5, 356

    Google Scholar 

  15. Pham T. V., Int. J. Sci. Eng. App. Sci., 2018, 4, 12

    Google Scholar 

  16. Wheeler S. E., Robertson K. A., Allen W. D., Bomble Y. J., Stanton J. F., J. Phys. Chem. A, 2007, 111, 3819

    Article  CAS  PubMed  Google Scholar 

  17. Shafir E. V., Slagle I. R., Knyazev V. D., J. Phys. Chem. A, 2003, 107, 8893

    Article  CAS  Google Scholar 

  18. Tang W., Tranter R. S., Brezinsky K., J. Phys. Chem. A, 2005, 109, 6056

    Article  CAS  PubMed  Google Scholar 

  19. Le T. N., Mebel A. M., Kaiser R. I., J. Comput. Chem., 2001, 13, 1522

    Article  Google Scholar 

  20. Ramos A. F., Miller J. A., Klippenstein S. J., Truhlar D. G., Chem. Rev., 2006, 106, 4560

    Google Scholar 

  21. Lee H., Nam M., Choia J., J. Chem. Phys., 2006, 124, 044311

    Article  CAS  PubMed  Google Scholar 

  22. Matsugi A., Miyoshi A., Int. J. Chem. Kinet., 2012, 44, 206

    Article  CAS  Google Scholar 

  23. Fahr A., Nayak A., Int. J. Chem. Kinet., 2000, 32, 118

    Article  CAS  Google Scholar 

  24. Nguyen H. T. M., Carl S. A., Peeters J., Nguyen M. T., Phys. Chem. Chem. Phys., 2004, 6, 4111

    Article  CAS  Google Scholar 

  25. Carl S. A., Nguyen H. T. M., Elsamra R. I. M., Nguyen M. T., Peeters J., J. Chem. Phys., 2005, 122, 114307

    Article  CAS  PubMed  Google Scholar 

  26. Atkinson D. B., Hudgens J. W., J. Chem. Phys., 1999, 103, 4242

    Article  CAS  Google Scholar 

  27. Matsugi A., Miyoshi A., Int. J. Chem. Kinet., 2012, 44, 206

    Article  CAS  Google Scholar 

  28. Singh H. J., Gour N. K., Indi. J. Chem., 2010, 49, 1565

    Google Scholar 

  29. Georgievskii Y., Miller J. A., Klippenstein S. J., Phys. Chem. Chem. Phys., 2007, 9, 4259

    Article  CAS  PubMed  Google Scholar 

  30. Becke A. D., J. Chem. Phys., 1992, 96, 2155

    Article  CAS  Google Scholar 

  31. Becke A. D., J. Chem. Phys., 1992, 97, 9173

    Article  CAS  Google Scholar 

  32. Becke A. D., J. Chem. Phys., 1993, 98, 5648

    Article  CAS  Google Scholar 

  33. Gonzalez C., Schlegel H. B., J. Chem. Phys., 1989, 90, 2154

    Article  CAS  Google Scholar 

  34. Gonzalez C., J. Chem. Phys., 1990, 94, 5523

    Article  CAS  Google Scholar 

  35. Bartlett R. J., Musial M., Rev. Mod. Phys., 2007, 79, 291

    Article  CAS  Google Scholar 

  36. NIST Computational Chemistry Comparison and Benchmark Database, Release 19, http://cccbdb.nist.gov/, 2018

  37. Frisch M. J., Trucks G., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E. Jr., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Version 7.0, Gaussian Inc., Wallingford CT, 2009

    Google Scholar 

  38. Eyring H., J. Chem. Phys., 1935, 3, 107

    Article  CAS  Google Scholar 

  39. Holbrook K. A., Pilling M. J., Robertson S. H., Unimolecular Reactions, J. Wiley, Chichester, 1996

    Google Scholar 

  40. Klippenstein S. J., Wagner A. F., Dunbar R. C., Wardlaw D. M., Robertson S. H., VARIFLEX, Version 1.0, Argonne National Laboratory, Argonne, 1999

  41. Robertson S. H., Glowacki D. R., Liang C. H., Morley C. M., Pilling M. J., MESMER, An Object-oriented Ctt Program for Carrying Out ME Calculations and Eigenvalue-eigenvector Analysis on Arbitrary Multiple Well Systems, http://sourceforge.net/projects/mesmer/, 2018

  42. Eckart C., Phys. Rev., 1930, 35, 1303

    Article  CAS  Google Scholar 

  43. Hippler H., Troe J., Wendelken H. J., J. Chem. Phys., 1983, 78, 6709

    Article  CAS  Google Scholar 

  44. Tardy D. C., Rabinovitch B. S., J. Chem. Phys., 1966, 45, 3720

    Article  CAS  Google Scholar 

  45. Chase M. W. Jr., NIST-JANAF Thermochemical Tables, 4th Ed., American Chemical Society: Washington D. C., American Institute of Physics for the National Institute of Standards and Technology, Woodbury, New York, 1998

    Google Scholar 

  46. Wheeler S. E., Robertson K. A., Allen W. D., Schaefer H. F., Bomble Y. J., Stanton J. F., J. Phys. Chem. A, 2007, 111, 3819

    Article  CAS  PubMed  Google Scholar 

  47. Gurvich L. V., Veyts I. V., Alcock C. B., Thermodynamic Properties of Individual Substances, 4th Ed., Hemisphere Pub. Co., New York, 1989

    Google Scholar 

  48. Duncan J. L., J. Molec. Phys., 1974, 28, 1177

    Article  CAS  Google Scholar 

  49. Yu J., Dong S. H., Sun G. H., Phys. Lett. A, 2004, 322, 290

    Article  CAS  Google Scholar 

  50. Brown R. L., J. Res. Natl. Bur. Stand., 1981, 86, 357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien V. Pham.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.V. Theoretical Investigation on Mechanism, Thermochemistry, and Kinetics of the Gas-phase Reaction of 2-Propargyl Radical with Formaldehyde. Chem. Res. Chin. Univ. 35, 884–891 (2019). https://doi.org/10.1007/s40242-019-9054-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-9054-0

Keywords

Navigation