Skip to main content
Log in

How We Can Account for Type Ia Supernova Environment in Cosmological Analysis

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Among the other types of supernovae, Type Ia Supernovae (SNe Ia) have less luminosity dispersion at maximum light and show higher optical luminosities. These properties allow to use them as cosmological distance indicators that led to the discovery of the accelerating expansion of the Universe. However, even after the luminosity correction for stretch and color parameters—“standardization”, there is a remaining dispersion on the Hubble diagram of ~0.11 mag. This dispersion can be due to SN environmental effects—progenitor age, chemical composition, surrounding dust. In this work we study the impact of SN galactocentric distance (376 Pantheon SNe Ia) and host-galaxy morphology (275 Pantheon SNe Ia) on the light curve parameters. We confirm that the stretch-parameter depends on galactocentric distance and host morphology, but there is no significant correlation for the color. In the epoch of large transient surveys such as the Vera Rubin Observatory’s Legacy Survey of Space and Time, a study of environment and other possible sources of systematical uncertainties in the cosmological analysis is of high priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. The paper is a continuation of the author’s studies of supernova environment, e.g. [5, 6].

  2. The detailed list of Pantheon SNe with host galaxies and their morphological types is given in Pruzhinskaya et al., 2020 [6]. The total number of studied SNe in [6] is higher (330 objects) since the galaxies classified as star-forming were also included to the analysis. Here, we considered three different groups instead of two as it was done in [6], and we can assign the star-forming galaxies to none of these groups.

REFERENCES

  1. B. W. Rust, PhD Thesis (Oak Ridge National Lab., TN, 1974).

  2. I. P. Pskovskii, Sov. Astron. 21, 675 (1977).

    ADS  Google Scholar 

  3. D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, R. J. Foley, M. E. Huber, R. Kessler, G. Narayan, A. G. Riess, et al., Astrophys. J. 859, 101 (2018); arXiv: 1710.00845.

  4. T. M. C. Abbott, S. Allam, P. Andersen, C. Angus, J. Asorey, A. Avelino, S. Avila, B. A. Bassett, K. Bechtol, G. M. Bernstein, et al., Astrophys. J. Lett. 872, L30 (2019); arXiv: 1811.02374.

  5. V. Henne, M. V. Pruzhinskaya, P. Rosnet, P.-F. Léget, E. E. O. Ishida, A. Ciulli, P. Gris, L.-P. Says, and E. Gangler, New Astron. 51, 43 (2017); arXiv: 1608.03674.

  6. M. V. Pruzhinskaya, A. K. Novinskaya, N. Pauna, and P. Rosnet, Mon. Not. R. Astron. Soc. 499, 5121 (2020); arXiv: 2006.09433.

  7. M. Rigault, G. Aldering, M. Kowalski, Y. Copin, P. Antilogus, C. Aragon, S. Bailey, C. Baltay, D. Baugh, S. Bongard, et al., Astrophys. J. 802, 20 (2015); arXiv: 1412.6501.

    Article  ADS  Google Scholar 

  8. A. Rest, D. Scolnic, R. J. Foley, M. E. Huber, R. Chornock, G. Narayan, J. L. Tonry, E. Berger, A. M. Soderberg, C. W. Stubbs, et al., Astrophys. J. 795, 44 (2014); arXiv: 1310.3828.

    Article  ADS  Google Scholar 

  9. D. Scolnic, A. Rest, A. Riess, M. E. Huber, R. J. Foley, D. Brout, R. Chornock, G. Narayan, J. L. Tonry, E. Berger, et al., Astrophys. J. 795, 45 (2014); arXiv: 1310.3824.

    Article  ADS  Google Scholar 

  10. J. A. Frieman, B. Bassett, A. Becker, C. Choi, D. Ci-nabro, F. DeJongh, D. L. Depoy, B. Dilday, M. Doi, P. M. Garnavich, et al., Astron. J. 135, 338 (2008); arXiv: 0708.2749.

    Article  ADS  Google Scholar 

  11. R. Kessler, A. C. Becker, D. Cinabro, J. Vanderplas, J. A. Frieman, J. Marriner, T. M. Davis, B. Dilday, J. Holtzman, S. W. Jha, et al., Astrophys. J. Suppl. 185, 32 (2009).

    Article  Google Scholar 

  12. J. Guy, M. Sullivan, A. Conley, N. Regnault, P. Astier, C. Balland, S. Basa, R. G. Carlberg, D. Fouchez, D. Hardin, et al., Astron. Astrophys. 523, A7 (2010); arXiv: 1010.4743.

    Article  Google Scholar 

  13. A. Conley, J. Guy, M. Sullivan, N. Regnault, P. Astier, C. Balland, S. Basa, R. G. Carlberg, D. Fouchez, D. Hardin, et al., Astrophys. J. Suppl. 192, 1 (2011); arXiv: 1104.1443.

    Article  Google Scholar 

  14. J. Guy, P. Astier, S. Baumont, D. Hardin, R. Pain, N. Regnault, S. Basa, R. G. Carlberg, A. Conley, S. Fabbro, et al., Astron. Astrophys. 466, 11 (2007).

    Article  ADS  Google Scholar 

  15. M. Sullivan, D. Le Borgne, C. J. Pritchet, A. Hodsman, J. D. Neill, D. A. Howell, R. G. Carlberg, P. Astier, E. Aubourg, D. Balam, et al., Astrophys. J. 648, 868 (2006); astro-ph/0605455.

    Article  ADS  Google Scholar 

  16. J. D. Neill, M. Sullivan, D. A. Howell, A. Conley, M. Seibert, D. C. Martin, T. A. Barlow, K. Foster, P. G. Friedman, P. Morrissey, et al., Astrophys. J. 707, 1449 (2009); arXiv: 0911.0690.

    Article  ADS  Google Scholar 

  17. M. Sullivan, A. Conley, D. A. Howell, J. D. Neill, P. Astier, C. Balland, S. Basa, R. G. Carlberg, D. Fouchez, J. Guy, et al., Mon. Not. R. Astron. Soc. 406, 782 (2010); arXiv: 1003.5119.

    ADS  Google Scholar 

  18. J. Johansson, D. Thomas, J. Pforr, C. Maraston, R. C. Nichol, M. Smith, H. Lampeitl, A. Beifiori, R. R. Gupta, and D. P. Schneider, Mon. Not. R. Astron. Soc. 435, 1680 (2013); arXiv: 1211.1386.

    Article  ADS  Google Scholar 

  19. Y.-L. Kim, Y. Kang, and Y.-W. Lee, J. Korean Astron. Soc. 52, 181 (2019); arXiv: 1908.10375.

  20. M. Childress, G. Aldering, P. Antilogus, C. Aragon, S. Bailey, C. Baltay, S. Bongard, C. Buton, A. Canto, F. Cellier-Holzem, et al., Astrophys. J. 770, 108 (2013); arXiv: 1304.4720.

    Article  ADS  Google Scholar 

  21. M. Roman, D. Hardin, M. Betoule, P. Astier, C. Balland, R. S. Ellis, S. Fabbro, J. Guy, I. Hook, D. A. Ho-well, et al., Astron. Astrophys. 615, A68 (2018); arXiv: 1706.07697.

  22. D. O. Jones, A. G. Riess, and D. M. Scolnic, Astrophys. J. 812, 31 (2015); arXiv: 1506.02637.

  23. M. E. Moreno-Raya, M. Mollá, Á. R. López-Sánchez, L. Galbany, J. M. Vílchez, A. Carnero Rosell, and I. Domínguez, Astrophys. J. Lett. 818, L19 (2016); arXiv: 1511.05348.

  24. M. Wenger, F. Ochsenbein, D. Egret, P. Dubois, F. Bonnarel, S. Borde, F. Genova, G. Jasniewicz, S. Laloë, S. Lesteven, et al., Astron. Astrophys. Suppl. 143, 9 (2000); astroph/0002110.

  25. D. Makarov, P. Prugniel, N. Terekhova, H. Courtois, and I. Vauglin, Astron. Astrophys. 570, A13 (2014); arXiv: 1408.3476.

    Article  ADS  Google Scholar 

  26. J. M. Mazzarella and NED Team, ASP Conf. Ser. 376, 153 (2007).

  27. R. Ahumada, C. Allende Prieto, A. Almeida, F. Anders, S. F. Anderson, B. H. Andrews, B. Anguiano, R. Arcodia, E. Armengaud, M. Aubert, et al., Astrophys. J. Suppl. 249, 3 (2020); arXiv: 1912.02905.

  28. M. Sullivan, R. S. Ellis, G. Aldering, R. Amanullah, P. Astier, G. Blanc, M. S. Burns, A. Conley, S. E. Deustua, M. Doi, et al., Mon. Not. R. Astron. Soc. 340, 1057 (2003); astro-ph/0211444.

    Article  ADS  Google Scholar 

  29. H. Lampeitl, M. Smith, R. C. Nichol, B. Bassett, D. Cinabro, B. Dilday, R. J. Foley, J. A. Frieman, P. M. Garnavich, A. Goobar, et al., Astrophys. J. 722, 566 (2010).

    Article  ADS  Google Scholar 

  30. M. Betoule, R. Kessler, J. Guy, J. Mosher, D. Hardin, R. Biswas, P. Astier, P. El-Hage, M. Konig, S. Kuhlmann, et al., Astron. Astrophys. 568, A22 (2014); arXiv: 1401.4064.

    Article  Google Scholar 

  31. R. Hill, H. Shariff, R. Trotta, S. Ali-Khan, X. Jiao, Y. Liu, S. K. Moon, W. Parker, M. Paulus, D. A. van Dyk, et al., Mon. Not. R. Astron. Soc. 481, 2766 (2018); arXiv: 1612.04417.

  32. A. A. Hakobyan, L. V. Barkhudaryan, A. G. Karapetyan, M. H. Gevorgyan, G. A. Mamon, D. Kunth, V. Adibekyan, and M. Turatto, Mon. Not. R. Astron. Soc. 499, 1424 (2020); arXiv: 2009.02135.

Download references

ACKNOWLEDGMENTS

This research has made use of the SIMBAD data base, operated at CDS, Strasbourg, France. We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr). This research has made use of the NASA/IPAC Extragalactic Data base (NED), which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology.

Funding

M.V.P. is supported by RFBR grant according to the research project 20-02-00779. The authors acknowledge the support by the Interdisciplinary Scientific and Educational School of Moscow University “Fundamental and Applied Space Research”. N.P. and P.R. acknowledge the Clermont Auvergne University and the French CNRS-IN2P3 agency for their funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Pruzhinskaya.

Additional information

Paper presented at the Fourth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus, on September 7–11, 2020. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pruzhinskaya, M.V., Pauna, N., Novinskaya, A.K. et al. How We Can Account for Type Ia Supernova Environment in Cosmological Analysis. Astron. Rep. 65, 1015–1020 (2021). https://doi.org/10.1134/S1063772921100292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921100292

Navigation