Skip to main content
Log in

Discovering Axion-Like Particles Using Cosmic Microwave Background as the Backlight

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Particle physicists and cosmologists have sought axion-like particles (ALPs) ever since they were postulated in quantum chromodynamics and string theory. We propose probing the electromagnetic interaction between ALPs and photons using the inter-conversion of cosmic microwave background (CMB) photons and ALPS in the magnetic field of galaxy clusters. Importantly, the unique, polarized non-gravitational signature of ALPs we propose can be measured from high resolution CMB imaging experiments even if ALPs are not the dark matter; our approach is therefore directly competitive with laboratory experiments. The search for this signal from the large sample of galaxy clusters from the upcoming CMB missions can provide orders of magnitude better constraints on the coupling between photons and ALPs than the current bounds available from any experiments. The ALP mass range and couplings that will be probed by the CMB experiments are unexplored to date and complementary with other cosmological searches from the imprints of ALPs on the cosmic density field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).

    Article  ADS  Google Scholar 

  2. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

    Article  ADS  Google Scholar 

  3. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

    Article  ADS  Google Scholar 

  4. P. Svrcek and E. Witten, J. High Energy Phys. 06, 051 (2006); hep-th/0605206.

  5. A. Arvanitaki et al., Phys. Rev. D 81, 123530 (2010); arXiv: 0905.4720.

    Article  ADS  Google Scholar 

  6. J. Ruz, J. K. Vogel, and M. J. Pivovaroff, Phys. Proc. 61, 153 (2015).

    Article  ADS  Google Scholar 

  7. N. Bastidon (for the ALPS Collab.), arXiv: 1509.02070 (2015).

  8. B. Majorovits et al. (2016); arXiv: 1611.04549.

  9. S. J. Asztalos et al., Phys. Rev. Lett. 104, 041301 (2010); arXiv: 0910.5914.

    Article  ADS  Google Scholar 

  10. D. Budker et al., Phys. Rev. X 4, 021030 (2014); arXiv: 1306.6089.

    Google Scholar 

  11. W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85, 1158 (2000); astro-ph/0003365.

    Article  ADS  Google Scholar 

  12. R. Hlozek, D. Grin, D. J. E. Marsh, and P. G. Ferreira, Phys. Rev. D 91, 103512 (2015); arXiv: 1410.2896.

    Article  ADS  Google Scholar 

  13. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).

    Article  ADS  Google Scholar 

  14. G. Raffelt and L. Stodolsky, Phys. Rev. D 37, 1237 (1988).

    Article  ADS  Google Scholar 

  15. S. Mukherjee, R. Khatri, and B. D. Wandelt, J. Cosmol. Astropart. Phys. 1804, 045 (2018); arXiv: 1801.09701.

  16. S. Mukherjee, D. N. Spergel, R. Khatri, and B. D. Wan-delt, J. Cosmol. Astropart. Phys. 2002, 032 (2020); arXiv: 1908.07534.

  17. S. Mukherjee, R. Khatri, and B. D. Wandelt, J. Cosmol. Astropart. Phys. 1906, 031 (2019); arXiv: 1811.11177.

  18. G. G. Raffelt, Stars as Laboratories for Fundamental Physics (Univ. Chicago Press, Chicago, 1996).

  19. L. D. Landau, Phys. Zeitschr. Sowjetunion 2, 46 (1932).

    Google Scholar 

  20. C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932).

    Article  ADS  Google Scholar 

  21. F. Govoni and L. Feretti, Int. J. Mod. Phys. D 13, 1549 (2004); astro-ph/0410182.

    Article  ADS  Google Scholar 

  22. T. E. Clarke, P. P. Kronberg, and H. Bohringer, Astrophys. J. Lett. 547, L111 (2001). http://stacks.iop.org/1538-4357/547/i=2/a=L111.

    Article  ADS  Google Scholar 

  23. I. Bartalucci, M. Arnaud, G. W. Pratt, A. Vikhlinin, E. Pointecouteau, W. R. Forman, C. Jones, P. Mazzotta, and F. Andrade-Santos, Astron. Astrophys. 608, A88 (2017); arXiv: 1709.06570.

  24. H. Bohringer, G. Chon, and P. P. Kronberg, Astron. Astrophys. 596, A22 (2016); arXiv: 1610.02887.

  25. P. Ade et al. (Simons Observatory Collab.) arXiv: 1808.07445 (2018).

  26. K. N. Abazajian et al. (CMB-S4 Collab.); arXiv: 1610.02743 (2016).

  27. M. Tegmark and G. Efstathiou, Mon. Not. R. Astron. Soc. 281, 1297 (1996); astro-ph/9507009.

    Article  ADS  Google Scholar 

  28. V. Anastassopoulos et al. (CAST), Nat. Phys. 13, 584 (2017); arXiv: 1705.02290.

  29. A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi, and A. Ringwald, J. Cosmol. Astropart. Phys. 2, 006 (2015); arXiv: 1410.3747.

  30. J. P. Conlon, M. C. D. Marsh, and A. J. Powell, Phys. Rev. D 93, 123526 (2016); arXiv: 1509.06748.

  31. B. Thorne, J. Dunkley, D. Alonso, and S. Naess, Mon. Not. R. Astron. Soc. 469, 2821 (2017); arXiv: 1608.02841.

  32. F. Pérez and B. E. Granger, Comput. Sci. Eng. 9, 21 (2007). http://ipython.org.

    Article  Google Scholar 

  33. J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).

    Article  Google Scholar 

  34. S. van der Walt, S. C. Colbert, and G. Varoquaux, Comput. Sci. Eng. 13, 22 (2011); arXiv: 1102.1523.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

S.M. acknowledges David Spergel, Rishi Khatri, and Benjamin Wandelt for crucial contributions on the paper [16] in which this idea was proposed. SM thanks David Spergel for reading the initial draft of this manuscript and also Lyman Page, and Neelima Sehgal for useful discussions on the work. We acknowledge the use of the following packages PySM [31], IPython [32], Matplotlib [33], and NumPy [34] in this analysis. This analysis is carried out at the Horizon cluster hosted by Institut d’Astrophysique de Paris. We thank Stephane Rouberol for smoothly running the Horizon cluster.

Funding

S.M. is supported by the DITP fellowship. This work is part of the Delta ITP consortium, a program of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture, and Science (OCW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mukherjee.

Additional information

Paper presented at the Fourth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus, on September 7–11, 2020. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S. Discovering Axion-Like Particles Using Cosmic Microwave Background as the Backlight. Astron. Rep. 65, 995–1001 (2021). https://doi.org/10.1134/S1063772921100243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921100243

Navigation