Skip to main content
Log in

Evolution of Comets

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Comets that were ejected by giant planets to the Oort cloud during the formation and evolution of planetary systems may get back to the orbits in the vicinity of the Sun with a time lapse under the gravitational influence of the same planets. The evaporation of cometary nuclei due to the solar radiation impact results in releasing a solid dust component from comets. We consider a numerical model of comet transformation to dust streams that move along cometary orbits around the Sun. The lifetime of dust streams, which are formed on the orbits of their parent comets, has been estimated. In the other planetary systems, which contain giant planets satisfying the condition \(\frac{m}{M} > \frac{r}{a}\) (where m and M are the masses of a planet and a star, respectively, r is the radius of a planet, and a is the semimajor axis of its orbit around the star), comets evolve in the same way. From the analysis of the interaction of the Oort cloud objects and the Sun with the passing-by stars and stellar clusters, it follows that a dense part of the Oort cloud is apparently limited in size; and we estimate this size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Stromgren, Popular Astron. 26, 509 (1918).

    ADS  Google Scholar 

  2. E. Stromgren, Publ. mindre Medd. Kobenhavns Observ. 144, 1 (1947).

    Google Scholar 

  3. J. H. Oort, Bull. Astron. Inst. Netherlands 11, 91 (1950).

    ADS  Google Scholar 

  4. S. Charnoz and A. Morbidelli, Icarus 188, 468 (2007).

    Article  ADS  Google Scholar 

  5. P. Dybczynski, G. Leto, M. Jakubik, et al., Astron. Astrophys. 487, 345 (2008).

    Article  ADS  Google Scholar 

  6. A. V. Tutukov, G. N. Dremova, and V. V. Dremov, Astron. Rep. 64, 936 (2020).

    Article  ADS  Google Scholar 

  7. B. Boe, R. Jedicke, K. Meech, et al., Icarus 333, 252 (2019).

    Article  ADS  Google Scholar 

  8. M. Ya. Marov, Space: From the Solar System Deep into the Universe (Fizmatlit, Moscow, 2017) [in Russian].

    Google Scholar 

  9. J. Correa-Otto and M. Calandra, Mon. Not. R. Astron. Soc. 490, 2495 (2019).

    Article  ADS  Google Scholar 

  10. J. Parriott and Ch. Alcock, Astrophys. J. 501, 357 (1998).

    Article  ADS  Google Scholar 

  11. E. González Egea, R. Raddi, D. Koester, L. K. Rogers, et al., Mon. Not. R. Astron. Soc. 501, 3916 (2021).

    Article  ADS  Google Scholar 

  12. M. Jutzi, P. Michel, and D. Richardson, Icarus 317, 215 (2019).

    Article  ADS  Google Scholar 

  13. E. González Egea, R. Raddi, R. F. Marocco, B. Burningham, and D. Koester, in Proceedings of the XIV.0 Scientific Meeting (virtual) of the Spanish Astronomical Society, July 13–15, 2020, p. 100. https://www.sea-astronomia.es/reunion-cientifica-2020.

    Google Scholar 

  14. Z. Sekanina and R. Kracht, astro-ph/1703.00928 (2017).

  15. G. Schiaparelli, Note e riflessioni intorno alla teoria astronomica delle stelle cadenti (Stamperia Reale, Firenze, 1867).

    Google Scholar 

  16. G. Schiaparelli, Intorno al corso ed all’origine probabile delle stelle meteoriche (Tipogr. Sci. Mat. Fis., Roma, 1866).

  17. L. Kresak, Bull. Astron. Inst. Czechosl. 27, 35 (1976).

    ADS  Google Scholar 

  18. L. Fladeland, A. Boley, and M. Byers, astro-ph/1911.12840 (2019).

  19. A. Jackson and H. Zook, in Proceedings of the 24th Lunar and Planetary Science Conference, Houston, TX, March 15–19, 1993 (1993), p. 707.

  20. D. Vokrauhlicky, D. Nesvorny, and L. Dones, Astrophys. J. 845, 27 (2017).

    Article  ADS  Google Scholar 

  21. R. Brasser and A. Morbidelli, Icarus 225, 40 (2013).

    Article  ADS  Google Scholar 

  22. A. Tutukov, Astron. Rep. 63, 79 (2019).

    Article  ADS  Google Scholar 

  23. J. Fernandez and A. Sosa, Mon. Not. R. Astron. Soc. 423, 167 (2012).

    Article  Google Scholar 

  24. C. Snodgrass, A. Fitzsimmons, and S. Weissman, Mon. Not. R. Astron. Soc. 414, 458 (2011).

    Article  ADS  Google Scholar 

  25. C. Lisse, J. Bauer, D. Cruikshank, et al., Nat. Astron. 4, 930 (2020).

    Article  ADS  Google Scholar 

  26. D. Durda, R. Greenberg, and R. Jedicke, in Proceedings of the 29th Annual Lunar and Planetary Science Conference, Houston, TX, March 16–20, 1998 (1998), No. 1680.

  27. D. Hughes, Mon. Not. R. Astron. Soc. 199, 1149 (1982).

    Article  ADS  Google Scholar 

  28. F. Colas, B. Zanda, J. Bouley, et al., Astron. Astrophys. 644, A53 (2020).

    Article  Google Scholar 

  29. M. Ichiguro, D. Kuroda, H. Hanayama, et al., Astrophys. J. 798, 34 (2015).

    Article  Google Scholar 

  30. P. Veres, I. Kornos, and J. Toth, Mon. Not. R. Astron. Soc. 412, 511 (2011).

    Article  ADS  Google Scholar 

  31. A. Sekhar and D. Asher, Mon. Not. R. Astron. Soc. 437, 71 (2014).

    Article  ADS  Google Scholar 

  32. Q. Ye, P. Brown, C. Bell, et al., Astrophys. J. 814, 79 (2015).

    Article  ADS  Google Scholar 

  33. T. L. Farnham, M. M. Knight, D. G. Schleicher, L. M. Feaga, et al., arXiv: 2012.01291 (2020).

  34. M. Ishiguro, D. Kuroda, H. Hanayama, et al., Astrophys. J. 798, 34 (2015).

    Article  Google Scholar 

  35. T. Kasuga and D. Jewitt, astro-ph/2010.16079 (2020).

  36. B. M. Shustov and A. V. Tutukov, Astron. Rep. 62, 724 (2018).

    Article  ADS  Google Scholar 

  37. G. Schiaparelli, Note e riflessioni intorno alla teoria astronomica delle stelle cadenti (Stamperia Reale, Firenze, 1867).

    Google Scholar 

  38. G. Ye, M. T. Hui, and X. Gao, Icarus 254, 48 (2018).

    Google Scholar 

  39. L. Neslusan, M. Hajdukova, D. Tomko, Z. Kanuchova, and M. Jakubik, astro-ph/1410.1307 (2014).

  40. H. Krüger, P. Strub, M. Sommer, et al., Astron. Astrophys. 643, A96 (2020).

    Article  Google Scholar 

  41. J. Vincent, N. Oklay, M. Pajola, et al., Astron. Astrophys. 587, 14 (2016).

    Article  Google Scholar 

  42. L. Chu, K. Meech, T. Farnham, et al., Icarus 338, 113532 (2020).

    Article  Google Scholar 

  43. Z. Lin, I. Lai, C. Su, et al., Astron. Astrophys. 588, L3 (2016).

    Article  ADS  Google Scholar 

  44. H. Boehnhardt, A. Rifferes, C. Ries, et al., Astron. Astrophys. 638, A8 (2020).

    Article  Google Scholar 

  45. D. Nesvorny, D. Vokrouhlicky, L. Dones, et al., Astrophys. J. 845, 27 (2017).

    Article  ADS  Google Scholar 

  46. Q.-Z. Ye, P. G. Brown, and P. Pokorný, Mon. Not. R. Astron. Soc. 462, 3511 (2016).

    Article  ADS  Google Scholar 

  47. A. Egal, P. Brown, J. Rendtel, M. Campbell-Brown, and P. Wiegert, Astron. Astrophys. 640, A58 (2020).

    Article  ADS  Google Scholar 

  48. L. Neslusan, O. Ivanova, M. Husarik, J. Svoren, and Z. Seman Krisandova, Planet. Space Sci. 125, 37 (2016).

    Article  ADS  Google Scholar 

  49. D. Nesvorny, W. F. Bottke, D. Vokrouhlický, M. Sykes, D. J. Lien, and J. Stansberry, Astrophys. J. Lett. 679, L143 (2008).

    Article  ADS  Google Scholar 

  50. E. Drolshagen, T. Ott, D. Koschny, et al., Planet. Space Sci. 184, 104869 (2020).

    Article  Google Scholar 

  51. J. Safrankova, Z. Nemecek, F. Nemec, et al., Astrophys. J. 870, 40 (2019).

    Article  ADS  Google Scholar 

  52. T. Galushina and G. Samlarov, Planet. Space Sci. 142, 38 (2017).

    Article  ADS  Google Scholar 

  53. A. Egal, P. Weigart, P. Broun, M. Campbell-Brown, and D. Vidaet, Astron. Astrophys. 642, A120 (2020).

    Article  ADS  Google Scholar 

  54. D. Nesvorny, P. Jenniskens, H. Levison, et al., Astrophys. J. 213, 816 (2010).

    Article  ADS  Google Scholar 

  55. R. Marschall, Y. Liao, N. Thomas, et al., Icarus 346, 113742 (2020).

    Article  Google Scholar 

  56. Y. Zhao, L. Rezac, P. Hartogh, et al., Mon. Not. R. Astron. Soc. 494, 2374 (2020).

    Article  ADS  Google Scholar 

  57. F. Moreno, O. Munoz, P. Gutierrez, et al., Mon. Not. R. Astron. Soc. 469, 186 (2017).

    Article  Google Scholar 

  58. H. Kimura, I. Mann, D. Biesecker, and E. K. Jessberger, Icarus 159, 529 (2002).

    Article  ADS  Google Scholar 

  59. H. Rein and S.-F. Liu, Astron. Astrophys. 537, A128 (2012).

    Article  ADS  Google Scholar 

  60. W. Dehnen, Astron. J. 115, 2384 (1998).

    Article  ADS  Google Scholar 

  61. J. Yu and Ch. Liu, Mon. Not. R. Astron. Soc. 475, 1033 (2018).

    Article  Google Scholar 

  62. M. Jakubik and L. Neslusan, Contrib. Astron. Obs. Skalnaté Pleso 38, 33 (2008).

    ADS  Google Scholar 

  63. Y. Su, S. Zhang, X. Shao, et al., Astrophys. J. 811, 134 (2015).

    Article  ADS  Google Scholar 

  64. D. Jewitt, astro-ph/2103.10577 (2021).

Download references

ACKNOWLEDGMENTS

The authors are grateful to H. Rein and C.-F. Liu for making available the REBOUND software package [59] used in our computations, the reviewer for constructive remarks, and D.S. Wiebe for useful discussions.

Funding

The authors acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation under the grant 075-15-2020-780 (N13.1902.21.0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Vereshchagin.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutukov, A.V., Sizova, M.D. & Vereshchagin, S.V. Evolution of Comets. Astron. Rep. 65, 884–896 (2021). https://doi.org/10.1134/S1063772921090079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921090079

Keywords:

Navigation