Skip to main content
Log in

Asynchronous Stars in Close Binary Systems

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The Kepler satellite has observed more than eight hundred close binary systems [1], for which it was possible to measure not only the orbital periods, but also the rotation velocities of the stars. It turned out that many stars in close binaries are not synchronized, i.e., the rotation period of the star is not exactly equal to the orbital period. The paper considers two models that can explain the asynchrony of stars: either due to the differential rotation of the star or due to the nonzero eccentricity of the binary system. A numerical simulation of the star’s evolution in a binary system is carried out, considering the inverse effect of a companion on the star, depending on the orbital parameters, and it is shown that a close binary system can be not only in a synchronized, but also in an unsynchronized state during the lifetime of the star on the main sequence. This model is applied to the KIC 8736245 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERNCES

  1. J. C. Lurie, K. Vyhmeister, S. L. Hawley, J. Adilia, et al., Astron. Astrophys. 154, 250 (2017).

    Google Scholar 

  2. P. B. Ivanov, J. C. B. Papaloizou, and S. V. Chernov, Mon. Not. R. Astron. Soc. 432, 2339 (2013).

    Article  ADS  Google Scholar 

  3. S. V. Chernov, J. C. B. Papaloizou, and P. B. Ivanov, Mon. Not. R. Astron. Soc. 434, 1079 (2013).

    Article  ADS  Google Scholar 

  4. P. Hut, Astron. Astrophys. 92, 167 (1980).

    ADS  MathSciNet  Google Scholar 

  5. P. Hut, Astron. Astrophys. 99, 126 (1981).

    ADS  Google Scholar 

  6. S. V. Chernov, Astron. Lett. 43, 186 (2017).

    Article  ADS  Google Scholar 

  7. T. Fetherolf, W. F. Welsh, J. A. Orosz, G. Windmiller, S. N. Quinn, D. R. Short, S. R. Kane, and R. A. Wade, Astron. J. 158, 198 (2019).

    Article  ADS  Google Scholar 

  8. L. M. Walkowicz and G. S. Basri, Mon. Not. R. Astron. Soc. 436, 1883 (2013).

    Article  ADS  Google Scholar 

  9. E. Marilli, A. Frasca, E. Covino, J. M. Alcala, et al., Astron. Astrophys. 463, 1081 (2007).

    Article  ADS  Google Scholar 

  10. B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, and F. Timmes, Astrophys. J. Suppl. 192, 3 (2011).

    Article  Google Scholar 

  11. B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, and F. Timmes, Astrophys. J. Suppl. 208, 4 (2013).

    Article  Google Scholar 

  12. B. Paxton, P. Marchant, J. Schwab, E. B. Bauer, et al., Astrophys. J. Suppl. 220, 15 (2015).

    Article  Google Scholar 

  13. J. Vos, R. H. Shstensen, P. Marchant, and H. van Winckel, Astron. Astrophys. 579, A49 (2015).

    Article  ADS  Google Scholar 

  14. P. P. Eggleton, Astrophys. J. 268, 368 (1983).

    Article  ADS  Google Scholar 

  15. H. Ritter, Astron. Astrophys. 202, 93 (1988).

    ADS  Google Scholar 

  16. T. M. Tauris and E. P. J. van den Heuvel, in Compact Stellar X-Ray Sources, Ed. by W. Lewin and M. van der Klis, Vol. 39 of Cambridge Astrophysics Series (Cambridge Univ. Press, Cambridge, UK, 2006), p. 623.

  17. D. Reimers, Mem. Soc. R. Sci. Liege 8, 369 (1975).

    ADS  Google Scholar 

  18. C. A. Tout and P. P. Eggleton, Mon. Not. R. Astron. Soc. 231, 823 (1988).

    Article  ADS  Google Scholar 

  19. D. B. Friend and D. C. Abbott, Astrophys. J. 311, 701 (1986).

    Article  ADS  Google Scholar 

  20. A. Maeder and G. Meynet, Astron. Astrophys. 361, 159 (2000).

    ADS  Google Scholar 

  21. N. Langer, Astron. Astrophys. 329, 551 (1998).

    ADS  Google Scholar 

  22. J. R. Hurley, C. A. Tout, and O. R. Pols, Mon. Not. R. Astron. Soc. 329, 897 (2002).

    Article  ADS  Google Scholar 

  23. H. M. J. Boffin and A. Jorissen, Astron. Astrophys. 205, 155 (1988).

    ADS  Google Scholar 

  24. N. Soker, Astron. Astrophys. 357, 557 (2000).

    ADS  Google Scholar 

  25. J.-P. Zahn, Astron. Astrophys. 41, 329 (1975).

    ADS  Google Scholar 

  26. F. A. Rasio, C. A. Tout, S. H. Lubow, and M. Livio, Astrophys. J. 470, 1187 (1996).

    Article  ADS  Google Scholar 

  27. P. Goldreich and P. D. Nicholson, Icarus 30, 301 (1977).

    Article  ADS  Google Scholar 

  28. S. V. Chernov, J. Exp. Theor. Phys. 127, 73 (2018).

    Article  ADS  Google Scholar 

  29. J.-P. Zahn, Astron. Astrophys. 57, 383 (1977).

    ADS  Google Scholar 

  30. S. V. Chernov, Astron. Lett. 43, 429 (2017).

    Article  ADS  Google Scholar 

  31. Studying Stellar Rotation and Convection, Ed. by M. Goupil, K. Belkacem, C. Neiner, F. Lignieres, and J. Green (Springer, Berlin, 2013).

    Google Scholar 

  32. S. Rappaport, F. Verbunt, and P. Joss, Astrophys. J. 275, 713 (1983).

    Article  ADS  Google Scholar 

  33. A. Heger, N. Langer, and S. E. Woosley, Astrophys. J. 528, 368 (2000).

    Article  ADS  Google Scholar 

  34. B. Chaboyer and J.-P. Zahn, Astron. Astrophys. 253, 173 (1992).

    ADS  Google Scholar 

  35. N. Langer, K. J. Fricke, and D. Sugimoto, Astron. Astrophys. 126, 207 (1983).

    ADS  Google Scholar 

  36. A. S. Endal and S. Sofia, Astrophys. J. 220, 279 (1978).

    Article  ADS  Google Scholar 

  37. A. S. Endal and S. Sofia, Astrophys. J. 232, 531 (1979).

    Article  ADS  Google Scholar 

  38. L. L. Kitchatinov, Phys. Usp. 48, 449 (2005).

    Article  ADS  Google Scholar 

  39. J.-L. Tassoul, Stellar Rotation (Cambridge Univ. Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  40. R. Kippenhahn, IAU Symp. 66, 20 (1974).

  41. P. Goldreich and G. Schubert, Astrophys. J. 150, 571 (1967).

    Article  ADS  Google Scholar 

  42. K. Fricke, Zeitschr. Astrophys. 68, 317 (1968).

    ADS  Google Scholar 

  43. S. V. Chernov, J. C. B. Papaloizou, and P. B. Ivanov, Mon. Not. R. Astron. Soc. 470, 2054 (2017).

    Article  ADS  Google Scholar 

  44. S. V. Chernov, Astron. Rep. 64, 425 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was (partially) supported by the Russian Foundation for Basic Research, project no. 19-02-00199. The author is grateful to the Government of the Russian Federation and the Ministry of Higher Education and Science of the Russian Federation for their support (project no. 075-15-2020-780 (N13.1902.21.0039)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Chernov.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, S.V. Asynchronous Stars in Close Binary Systems. Astron. Rep. 65, 657–675 (2021). https://doi.org/10.1134/S106377292109002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377292109002X

Keywords:

Navigation