Skip to main content
Log in

Synchronization of Components in Binary Systems

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—Two classical theories of synchronization of main-sequence components in binary systems developed by J.P. Zahn and J.-L. Tassoul are considered. These two theories predict significantly different synchronization time scales. Within the framework of this study, the times and probabilities of synchronization for a set of O–G-type model stars are estimated and compared with the results based on recent observational data from the catalog of detached eclipsing binaries by G. Torres. For each of the catalog objects, the maximum period of axial rotation is computed and compared with the known orbital period. A conclusion about the synchronization of each of the systems is then made based on the above theoretical estimates. Zahn’s theory, which yields longer synchronization time scales, is found to describe the observational data better than Tassoul’s theory. The results of this analysis will be useful for estimating the probability of synchronization in binary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Andersen, Astron. and Astrophys. 3, 91 (1991).

    Google Scholar 

  2. X. Delfosse, T. Forveille, D. Ségransan, et al., Astron. and Astrophys. 364, 217 (2000).

    ADS  Google Scholar 

  3. J. A. Docobo, V. S. Tamazian, O. Y. Malkov, et al., Monthly Notices Royal Astron. Soc. 459, 1580 (2016).

    Article  ADS  Google Scholar 

  4. Z. Eker, V. Bakıs¸, S. Bilir, et al., Monthly Notices Royal Astron. Soc. 479, 5491 (2018).

    Article  ADS  Google Scholar 

  5. J. Fernandes, Y. Lebreton, A. Baglin, and P. Morel, Astron. and Astrophys. 338, 455 (1998).

    ADS  Google Scholar 

  6. S. Y. Gorda and M. A. Svechnikov, Astronomy Reports 42, 793 (1998).

    ADS  Google Scholar 

  7. T. J. Henry, ASP Conf. Ser. 318, pp. 159–165 (2004).

  8. T. J. Henry, O. G. Franz, L. H. Wasserman, et al., Astrophys. J. 512, 864 (1999).

    Article  ADS  Google Scholar 

  9. I. Iben, Jr., Annual Rev. Astron. Astrophys. 5, 571 (1967).

    Article  ADS  Google Scholar 

  10. K. F. Khaliullin and A. I. Khaliullina, Monthly Notices Royal Astron. Soc. 382 (1), 356 (2007).

    Article  ADS  Google Scholar 

  11. K. F. Khaliullin and A. I. Khaliullina, Monthly Notices Royal Astron. Soc. 401 (1), 257 (2010).

    Article  ADS  Google Scholar 

  12. A. Y. Kniazev, Astrophys. Space Sci., 365 10, id. 169 (2020).

  13. A. Y. Kniazev, O. Y. Malkov, I. Y. Katkov, and L. N. Berdnikov, Research Astron. Astrophys. 20 (8), id. 119 (2020).

  14. D. A. Kovaleva, Astronomy Reports 45, 972 (2001).

    Article  ADS  Google Scholar 

  15. O. Malkov, D. Kovaleva, S. Sichevsky, and G. Zhao, Research Astron. Astrophys. 20 (9), id. 139 (2020).

  16. O. Y. Malkov, Astron. and Astrophys. 402, 1055 (2003).

    Article  ADS  Google Scholar 

  17. O. Y. Malkov, E. Oblak, E. A. Avvakumova, and J. Torra, Astron. and Astrophys. 465, 549 (2007).

    Article  ADS  Google Scholar 

  18. O. Y. Malkov, A. E. Piskunov, and D. A. Shpil’kina, Astron. and Astrophys. 320, 79 (1997).

    ADS  Google Scholar 

  19. O. Y. Malkov, V. S. Tamazian, J. A. Docobo, and D. A. Chulkov, Astron. and Astrophys. 546, id. A69 (2012).

  20. M. J. Pecaut and E. E.Mamajek, Astrophys. J. Suppl. 208, id. 9 (2013).

  21. A. E. Piskunov, Soviet Astronomy Lett. 7, 8 (1981).

    ADS  Google Scholar 

  22. D. M. Popper, Annual Rev. Astron. Astrophys. 18, 115 (1980).

    Article  ADS  Google Scholar 

  23. V. Straižys, Multicolor stellar photometry, Astron. Astrophys. Ser. 15, (Pachart Pub. House, Tucson, 1992).

  24. J.-L. Tassoul, Astrophys. J. 322, 856 (1987).

    Article  ADS  Google Scholar 

  25. J.-L. Tassoul, Astrophys. J. 324, L71 (1988).

    Article  ADS  Google Scholar 

  26. M. B. Taylor, ASP Conf. Ser., 347, 29 (2005).

  27. G. Torres, J. Andersen, and A. Giménez, Astron. Astrophys. Rev. 18, 67 (2010).

    Article  ADS  Google Scholar 

  28. C. Wang, N. Langer, A. Schootemeijer, et al., Nature Astronomy 6, 480 (2022).

    Article  ADS  Google Scholar 

  29. J. P. Zahn, Astron. and Astrophys. 41, 329 (1975).

    ADS  Google Scholar 

  30. J. P. Zahn, Astron. and Astrophys. 57, 383 (1977).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to L.N. Berdnikov and A.Yu. Kniazev for their assistance with preparing this paper. This study used the TOPCAT service (Taylor, 2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Pakhomova.

Ethics declarations

The author declares that there is no conflict of interest.

Additional information

Translated by A. Dambis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomova, P.V. Synchronization of Components in Binary Systems. Astrophys. Bull. 77, 264–270 (2022). https://doi.org/10.1134/S1990341322030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341322030099

Keywords:

Navigation