Skip to main content
Log in

Properties of Stellar Populations of Eight Galactic Global Clusters with Low Central Surface Brightness

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

This paper presents the results of the analysis of the integrated-light spectra of eight Galactic globular clusters with a relatively low luminosity and stellar density: Palomar 1, Palomar 2, Palomar 10, Palomar 13, Palomar 14, NGC 6426, NGC 6535, and NGC 6749. The absorption spectral indices in the Lick system were measured in their spectra, as well as in the spectra of bright clusters: NGC 7006, NGC 6229, NGC 6779, NGC 6205, NGC 6341, and NGC 2419. The age, metallicity, and approximate abundance of the \(\alpha \)-process elements were determined for eight objects under study. The material of the study was the archival observational data of the 1.93-m telescope of the Haute-Provence Observatory. For seven out of eight objects, galactic analogs with close values of the Lick indices within the limits of their determination errors were found. The coincidence of the Lick indices implies the similarity of age and chemical composition. The available literature data confirm our conclusions regarding the similarity of the properties of the clusters’ stellar populations. According to the literature data on the spatial position and motion of objects, the objects of study turned out to belong, as a rule, to the same subsystems of the Galaxy as their analogs. No globular clusters with a complete set of Lick indices similar to those of Palomar 1 were found, which supports the literature conclusions about its possible extragalactic origin. Our photometry of stars in the VLT images and the Gaia DR3 data allowed us to estimate the metallicity, age, color excess, and distance for Palomar 10. The Gaia DR3 data for NGC 6426 were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Iron abundance in solar units: [Fe/H] = \(\log({{N}_{{{\text{Fe}}}}}{\text{/}}{{N}_{{\text{H}}}}) - \log{{({{N}_{{{\text{Fe}}}}}{\text{/}}{{N}_{{\text{H}}}})}_{ \odot }}\), where \({{N}_{{{\text{Fe}}}}}{\text{/}}{{N}_{{\text{H}}}}\) is the ratio of the iron and hydrogen abundances by the number of atoms or mass. The mass fractions of hydrogen X, helium Y, and metals Z for the Sun are given in [2]; X + Y + Z = 1.

  2. ftp://ftp.sao.ru/pub/sme/LickIndOHP/PosSlit/

  3. https://www.ipac.caltech.edu/2mass/

  4. ftp://ftp.sao.ru/pub/sme/LickIndOHP/Num/

  5. http://www.eso.org/observing/dfo/quality/FORS2/qc/photcoeff/photcoeffs_fors2.html

  6. http://ulyss.univ-lyon1.fr

  7. http://atlas.obs-hp.fr/elodie/; http://ulyss.univ-lyon1.fr/models.html

  8. ftp://ftp.sao.ru/pub/sme/LickIndOHP/AtmPar/

  9. http://astro.wsu.edu/worthey/html/system.html

  10. ftp://ftp.sao.ru/pub/sme/LickIndOHP/SpComp/

  11. http://astro.wsu.edu/worthey/html/index.table.html

  12. ftp://ftp.sao.ru/pub/sme/LickIndOHP/LickIMF/

  13. ftp://ftp.sao.ru/pub/sme/LickIndOHP/CMDpos

  14. http://basti-iac.oa-abruzzo.inaf.it/isocs.html

  15. http://astro.wsu.edu/ftp/WO97/export.dat

  16. ftp://ftp.sao.ru/pub/sme/LickIndOHP/LickCalibr/

  17. According to [51], \({{{\text{H}}}_{{{{\delta }_{{\text{F}}}}}}}{\text{/}}{{{\text{H}}}_{\beta }} \geqslant 1.05\) for globular clusters with blue HB (\({\text{HBR}} = (B - R){\text{/}}(B + V + R) \sim 1\)), and \({{{\text{H}}}_{{{{\delta }_{{\text{F}}}}}}}{\text{/}}{{{\text{H}}}_{\beta }} \leqslant \) 0.85 for objects with red HB (HBR = (BR)/(B + V + R) ~ –1). The intermediate \({{{\text{H}}}_{{{{\delta }_{{\text{F}}}}}}}{\text{/}}{{{\text{H}}}_{\beta }}\) values are typical, respectively, for clusters with approximately equal numbers of stars in the red and blue parts of the HB.

  18. In contrast to the inner halo clusters, the outer halo objects are located at distances from the center of the Galaxy more than 15 kpc. Galactic halo clusters on average have the age of \( \geqslant \)10 Gyr and [Fe/H] < –1.3 dex (see, e.g., [44]).

  19. ftp://ftp.sao.ru/pub/sme/LickIndOHP/SpComp/ ULySSngc6426_7078all.ps

  20. ftp://ftp.sao.ru/pub/sme/LickIndOHP/CMDpos/cmdN6535.ps

  21. https://www.cosmos.esa.int/gaia

  22. https://www.cosmos.esa.int/web/gaia/dpac/consortium

REFERENCES

  1. G. O. Abell, Publ. Astron. Soc. Pacif. 67, 258 (1955).

    Article  ADS  Google Scholar 

  2. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009).

    Article  ADS  Google Scholar 

  3. R. Zinn and M. J. West, Astrophys. J. Suppl. 55, 45 (1984).

    Article  Google Scholar 

  4. W. E. Harris, Astron. J. 112, 1487 (1996).

    Article  ADS  Google Scholar 

  5. A. Sollima, D. Martínez-Delgado, D. Valls-Gabaud, and J. Penarrubia, Astrophys. J. 726, 47 (2011).

    Article  ADS  Google Scholar 

  6. J. D. Bradford, M. Geha, R. R. Münoz, F. A. Santana, et al., Astrophys. J. 743, 167 (2011).

    Article  ADS  Google Scholar 

  7. G. Lemaitre, D. Kohler, D. Lacroix, J. P. Meunier, and A. Vin, Astron. Astrophys. 228, 546 (1990).

    ADS  Google Scholar 

  8. G. Worthey, S. M. Faber, J. J. Gonzalez, and D. Burstein, Astrophys. J. Suppl. 94, 687 (1994).

    Article  Google Scholar 

  9. D. Burstein, S. M. Faber, C. M. Gaskell, and N. Krumm, Astrophys. J. 287, 586 (1984).

    Article  ADS  Google Scholar 

  10. G. Worthey, Astrophys. J. Suppl. 95, 107 (1994).

    Article  Google Scholar 

  11. G. Worthey and D. L. Ottaviani, Astrophys. J. Suppl. 111, 377 (1997).

    Article  Google Scholar 

  12. S. C. Trager, G. Worthey, S. M. Faber, D. Burstein, and J. J. Gonzalez, Astrophys. J. Suppl. 116, 1 (1997).

    Article  Google Scholar 

  13. A. Sarajedini, L. R. Bedin, B. Chaboyer, A. Dotter, et al., Astron. J. 133, 1658 (2007).

    Article  ADS  Google Scholar 

  14. M. Hilker, Astron. Astrophys. 448, 171 (2006).

    Article  ADS  Google Scholar 

  15. D. A. Khamidullina, M. E. Sharina, V. V. Shimansky, and E. Davoust, Astrophys. Bull. 69, 409 (2014).

    Article  ADS  Google Scholar 

  16. K. Banse, Ph. Crane, Ch. Ounnas, and D. Ponz, in Proceedings of the DECUS European Symposium (Digital Equipment Corp., Maynard, MA, USA, 1983), p. 87.

  17. D. Tody, in Astronomical Data Analysis Software and Systems II, Ed. by R. J. Hanisch, R. J. V. Brissenden, and J. Barnes, ASP Conf. Ser. 52, 173 (1993).

    Google Scholar 

  18. P. B. Stetson, L. E. Davis, and D. R. Crabtree, in CCDs in Astronomy, ASP Conf. Ser. 8, 289 (1990).

    Google Scholar 

  19. M. Koleva, P. Prugniel, P. Ocvirk, D. Le Borgne, and C. Soubiran, Mon. Not. R. Astron. Soc. 385, 1998 (2008).

    Article  ADS  Google Scholar 

  20. M. Koleva, P. Prugniel, A. Bouchard, and Y. Wu, Astron. Astrophys. 501, 1269 (2009).

    Article  ADS  Google Scholar 

  21. P. Prugniel and C. Soubiran, Astron. Astrophys. 369, 1048 (2001).

    Article  ADS  Google Scholar 

  22. P. Prugniel, C. Soubiran, and M. Koleva, and D. le Borgne, VizieR Online Data Catalog, No. III/251 (2007).

  23. A. Alonso, S. Arribas, and C. Martínez-Roger, Astron. Astrophys. Suppl. Ser. 140, 261 (1999).

    Article  ADS  Google Scholar 

  24. I. Ramírez and J. Meléndez, Astrophys. J. 626, 465 (2005).

    Article  ADS  Google Scholar 

  25. D. Thomas, C. Maraston, and R. Bender, Mon. Not. R. Astron. Soc. 343, 279 (2003).

    Article  ADS  Google Scholar 

  26. D. Thomas, C. Maraston, and A. Korn, Mon. Not. R. Astron. Soc. 351, L19 (2004).

    Article  ADS  Google Scholar 

  27. D. le Borgne, B. Rocca-Volmerange, P. Prugniel, A. Lancon, M. Fioc, and C. Soubiran, Astron. Astrophys. 425, 881 (2004).

    Article  ADS  Google Scholar 

  28. A. Vazdekis, P. Sanchez-Blazquez, J. Falcon-Barroso, A. J. Cenarro., M. A. Beasley, N. Cardiel, J. Gorgas, and R. F. Peletier, Mon. Not. R. Astron. Soc. 404, 1639 (2010).

    ADS  Google Scholar 

  29. P. Sánchez-Blázquez, R. F. Peletier, J. Jiménez-Vicente, N. Cardiel, et al., Mon. Not. R. Astron. Soc. 371, 703 (2006).

    Article  ADS  Google Scholar 

  30. M. E. Sharina, V. V. Shimansky, and N. N. Shimanskaya, Astrophys. Bull. 75, 247 (2020).

    Article  ADS  Google Scholar 

  31. F. Castelli and R. L. Kurucz, in Modelling of Stellar Atmospheres, Poster Contributions, Proceedings of the IAU 210th Symposium, Uppsala, Sweden, June 17–21, 2002, Ed. by N. Piskunov, W. W. Weiss, and D. F. Gray, Astron. Soc. Pacif. 210, A20 (2003).

  32. E. E. Salpeter, Astrophys. J. 121, 161 (1955).

    Article  ADS  Google Scholar 

  33. A. Sollima and H. Baumgardt, Mon. Not. R. Astron. Soc. 471, 3668 (2017).

    Article  ADS  Google Scholar 

  34. A. Pietrinferni, S. Cassisi, M. Salaris, and S. Hidalgo, Astron. Astrophys. 558, 46 (2013).

    Article  ADS  Google Scholar 

  35. M. E. Sharina, V. V. Shimansky and A. Y. Kniazev, Mon. Not. R. Astron. Soc. 471, 1955 (2017).

    Article  ADS  Google Scholar 

  36. R. P. Schiavon, N. M. Caldwell, H. P. Heather, S. Courteau, L. A. MacArthur, and G. J. Graves, Astron. J. 143, 14 (2012).

    Article  ADS  Google Scholar 

  37. P. Marigo, L. Girardi, A. Bressan, P. Rosenfield, et al., Astrophys. J. 835, 77 (2017).

    Article  ADS  Google Scholar 

  38. D. Kaisler, W. E. Harris, and D. E. McLaughlin, Publ. Astron. Soc. Pacif. 109, 926 (1997).

    Article  ADS  Google Scholar 

  39. T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, et al., Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  40. M. Riello, F. de Angeli, D. W. Evans, P. Montegriffo, et al., arXiv: 2012.01916 [astroph.IM] (2020).

  41. E. Vasiliev, Mon. Not. R. Astron. Soc. 484, 2832 (2019).

    Article  ADS  Google Scholar 

  42. S. L. Hidalgo, A. Pietrinferni, S. Cassisi, M. Salaris, et al., Astrophys. J. 856, 125 (2018).

    Article  ADS  Google Scholar 

  43. M. E. Sharina, M. V. Ryabova, M. I. Maricheva, and A. S. Gorban, Astron. Rep. 62, 733 (2018).

    Article  ADS  Google Scholar 

  44. E. Carretta, A. Bragaglia, R. G. Gratton, A. Recio-Blanco, S. Lucatello, V. d’Orazi, and S. Cassisi, Astron. Astrophys. 516, 55 (2010).

    Article  ADS  Google Scholar 

  45. E. Bica, S. Ortolani, and B. Barbuy, Publ. Astron. Soc. Austral. 33, 28 (2016).

    Article  ADS  Google Scholar 

  46. A. Pérez-Villegas, B. Barbuy, L. Kerber, S. Ortolani, S. O. Souza, and E. Bica, Mon. Not. R. Astron. Soc. 491, 3251 (2020).

    ADS  Google Scholar 

  47. A. T. Bajkova, G. Carraro, V. I. Korchagin, N. O. Budanova, and V. V. Bobylev, Astrophys. J. 895, 69 (2020).

    Article  ADS  Google Scholar 

  48. A. T. Bajkova and V. V. Bobylev, arXiv: 2008.13624 [astroph.GA] (2020).

  49. D. Massari, H. H. Koppelman, and A. Helmil, Astron. Astrophys. 630, L4 (2019).

    Article  ADS  Google Scholar 

  50. V. A. Marsakov, V. V. Koval’, and M. L. Gozha, Astron. Rep. 63, 274 (2019).

    Article  ADS  Google Scholar 

  51. R. P. Schiavon, J. A. Rose, S. Courteau, and L. A. Mac-Arthur, Astrophys. J. 608, L33 (2004).

    Article  ADS  Google Scholar 

  52. F. Jahandar, K. A. Venn, M. D. Shetrone, M. Irwin, et al., Mon. Not. R. Astron. Soc. 470, 4782 (2017).

    Article  ADS  Google Scholar 

  53. C. M. Sakari, K. A. Venn, M. Irwin, W. Aoki, N. Arimoto, and A. Dotter, Astrophys. J. 740, 106 (2011).

    Article  ADS  Google Scholar 

  54. L. Monaco, I. Saviane, M. Correnti, P. Bonifacio, and D. Geisler, Astron. Astrophys. 525, A124 (2011).

    Article  ADS  Google Scholar 

  55. R. A. P. Oliveira, S. O. Souza, L. O. Kerber, B. Barbuy, et al., Astrophys. J. 891, 37 (2020).

    Article  ADS  Google Scholar 

  56. D. A. VandenBerg, K. Brogaard, R. Leaman, and L. Casagrande, Astrophys. J. 775, 134 (2013).

    Article  ADS  Google Scholar 

  57. J. C. Roediger, S. Courteau, G. Graves, and R. P. Schiavon, Astrophys. J. Suppl. 210, 10 (2014).

    Article  Google Scholar 

  58. C. Conroy, A. Villaume, P. G. van Dokkum, and K. Lind, Astrophys. J. 854, 139 (2018).

    Article  ADS  Google Scholar 

  59. E. Valenti, L. Origlia and R. M. Rich, Mon. Not. R. Astron. Soc. 414, 2690 (2011).

    Article  ADS  Google Scholar 

  60. M. Bonatto and A. L. Chies-Santos, Mon. Not. R. Astron. Soc. 493, 2688 (2020).

    Article  ADS  Google Scholar 

  61. B. Dias, B. Barbuy, I. Saviane, E. V. Held, G. S. Da Costa, S. Ortolani, M. Gullieuszik, and S. Vásquez, Astron. Astrophys. 590, 9 (2016).

    Article  ADS  Google Scholar 

  62. B. J. Pritzl, K. A. Venn, and M. Irvin, Astron. J. 130, 2140 (2005).

    Article  ADS  Google Scholar 

  63. Ş. Çalışkan, N. Christlieb, and E. K. Grebel, Astron. Astrophys. 537, 83 (2012).

  64. C. I. Johnson, N. Caldwell, R. M. Rich, and M. G. Walker, Astron. J. 154, 155 (2017).

    Article  ADS  Google Scholar 

  65. M. Hanke, A. Koch, C. J. Hansen, and A. McWilliam, Astron. Astrophys. 599, 97 (2017).

    Article  ADS  Google Scholar 

  66. M. E. Sharina, V. V. Shimansky, and D. A. Khamidullina, Astrophys. Bull. 73, 337 (2018).

    Article  Google Scholar 

  67. S. Meszáros, S. L. Martell, M. Shetrone, S. Lucatello, et al., Astron. J. 149, 153 (2015).

    Article  ADS  Google Scholar 

  68. A. Bragaglia, E. Carretta, V. d’Orazi, A. Sollima, P. Donati, R. G. Gratton, and S. Lucatello, Astron. Astrophys. 607, 44 (2017).

    Article  ADS  Google Scholar 

  69. S. L. Martell, G. H. Smith, and M. M. Briley, Astron. J. 136, 2522 (2008).

    Article  ADS  Google Scholar 

  70. C. Mũnoz, D. Geisler, S. Villanova, I. Saviane, et al., Astron. Astrophys. 620, 96 (2018).

  71. J. E. Colucci, R. A. Bernstein, and A. McWilliam, Astrophys. J. 834, 105 (2017).

    Article  ADS  Google Scholar 

  72. A. Koch and P. Côté, Astron. Astrophys. 632, 55 (2019).

    Article  ADS  Google Scholar 

  73. R. G. Gratton, E. Carretta, and A. Bragaglia, Astron. Astrophys. Rev. 20, 50 (2012).

    Article  ADS  Google Scholar 

  74. R. P. Kraft, Publ. Astron. Soc. Pacif. 106, 553 (1994).

    Article  ADS  Google Scholar 

  75. M. J. West, P. Côté, R. O. Marzke, and J. Andrés, Nature (London, U.K.) 427, 31 (2004).

    Article  ADS  Google Scholar 

  76. A. Rosenberg, I. Saviane, G. Piotto, A. Aparicio, and S. R. Zaggia, Astron. J. 115, 648 (1998).

    Article  ADS  Google Scholar 

  77. W. E. Harris, P. R. Durrell, G. R. Petitpas, T. M. Webb, and S. C. Woodworth, Astron. J. 114, 103 (1997).

    Google Scholar 

  78. G. Bertelli, L. Girardi, P. Marigo, and E. Nasi, Astron. Astrophys. 484, 815 (2008).

    Article  ADS  Google Scholar 

  79. M. Salaris and A. Weiss, Astron. Astrophys. 388, 492 (2002).

    Article  ADS  Google Scholar 

  80. M. Sharina, B. Aringer, E. Davoust, A. Y. Kniazev, and C. J. Donzelli, Mon. Not. R. Astron. Soc. 426, L31 (2012).

    Article  ADS  Google Scholar 

  81. G. Piotto, A. P. Milone, L. R. Bedin, J. Anderson, et al., Astron. J. 149, 91 (2015).

    Article  ADS  Google Scholar 

  82. G. Chabrier, Astrophys. Space Sci. Lib. 327, 41 (2005).

    Article  ADS  Google Scholar 

  83. S. Vásques, I. Saviane, E. V. Held, G. S. da Costa, et al., Astron. Astrophys. 619, A13 (2018).

    Article  Google Scholar 

  84. P. Côté, S. G. Djorgovski, G. Meylan, S. Castro, and J. K. McCarthy, Astron. J. 574, 783 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank E. Davoust and the OHP for providing the OHP observational data. This study was carried out based on observations collected by the European Organization for Astronomical Research in the Southern Hemisphere as part of the ESO 077.D-0775 program and used the services of the ESO Science Archives Foundation. This work has made use of data from the European Space Agency (ESA) missionFootnote 21 processed by the Gaia Data Processing and Analysis Consortium (DPACFootnote 22). Funding for DPAC was provided by national institutions, in particular, institutions participating in the Gaia Multilateral Agreement.

Funding

The study was funded by the Russian Foundation for Basic Research, grant no. 18-02-00167 а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Sharina.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharina, M.E., Maricheva, M.I. Properties of Stellar Populations of Eight Galactic Global Clusters with Low Central Surface Brightness. Astron. Rep. 65, 455–476 (2021). https://doi.org/10.1134/S1063772921060068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921060068

Navigation