Skip to main content
Log in

Mutual Gravitational Energy of Gaussian Rings and the Problem of Perturbations in Celestial Mechanics

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A new approach to the study of long-period and secular perturbations in celestial mechanics is developed. In contrast to the traditional use of the apparatus of the perturbing Lagrange function, we rely on the mutual potential energy of elliptic Gaussian rings. This approach is important due to the fact that instead of averaging the expression for the perturbing Lagrange function obtained in a very complicated way, it is methodologically simpler to immediately calculate the mutual energy of Gaussian rings. In this paper, we consider the problem for two Gaussian rings with one common focus, with small eccentricities, a small angle of mutual inclination, and an arbitrary angle between the lines of apsides. An expression for the mutual energy of such a system of rings is obtained in the form of a series up to the terms of the 4th order of smallness inclusively. This expression is used to derive and solve a system of differential equations describing the evolution of rings in an ecliptic reference frame. The method is used for a detailed study of the two-planetary Sun–Jupiter–Saturn problem. The results complement and refine the results of other authors. The new expression of the perturbing function can be applied not only to the planetary problem, in which all inclinations should be small, but also to the problem with nonplanetary rings found around small celestial bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. N. Duboshin, Celestial Mechanics. Fundamental Problems and Methods (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  2. B. P. Kondratyev, Solar Syst. Res. 46, 352 (2012).

    Article  ADS  Google Scholar 

  3. V. A. Antonov, I. I. Nikiforov, and K. V. Kholshevnikov, Elements of the Theory of Gravitational Potential and Some Cases of Its Explicit Expression (S-PbGU, St. Petersburg, 2008) [in Russian].

  4. M. A. Vashkov’yak and S. N. Vashkov’yak, Solar Syst. Res. 46, 69 (2012).

    Article  ADS  Google Scholar 

  5. B. P. Kondratyev, Potential Theory. New Methods and Problems with Solutions (Mir, Moscow, 2007) [in Russian].

  6. B. P. Kondratyev, Solar Syst. Res. 48, 396 (2014).

    Article  ADS  Google Scholar 

  7. C. V. L. Charlier, Mechanik des Himmels (Walter de Gruyter, Berlin, Leipzig, 1927).

    Book  Google Scholar 

  8. B. P. Kondratyev and V. S. Kornoukhov, Tech. Phys. 64, 1395 (2019).

    Article  Google Scholar 

  9. B. P. Kondratyev, Tech. Phys. 61, 1097 (2016).

    Article  Google Scholar 

  10. Handbook of Mathematical Functions, Ed. by M. Ab-ramowitz and I. Stegun (Nation. Bureau of Standards, New York, 1964).

  11. A. G. Webster, The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies (BiblioBazaar, Charleston, 2009).

    Google Scholar 

  12. M. F. Subbotin, Introduction to Theoretical Astronomy (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  13. C. D. Murray and S. F. Dermott, Solar System Dynamics (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  14. F. Braga-Ribas, B. Sicardy, J. L. Ortiz, et al., Nature (London, U.K.) 508, 72 (2014).

    Article  ADS  Google Scholar 

  15. J. L. Ortiz, P. Santos-Sanz, B. Sicardy, et al., Nature (London, U.K.) 550, 219 (2017).

    Article  ADS  Google Scholar 

  16. P. Goldreich and S. Tremaine, Ann. Rev. Astron. Astrophys. 20, 249 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Kondratyev.

Additional information

Translated by M. Chubarova

Appendices

APPENDIX A

From the spherical triangle in Fig. 1, we obtain the formulas

$$\sin \left( {\Delta {{{\bar {\omega }}}_{1}}} \right) = \frac{{\sin i_{2}^{'}\sin \left( {\Delta \Omega '} \right)}}{{\sin \left( {\Delta i} \right)}},$$
$$\cos \left( {\Delta {{{\bar {\omega }}}_{1}}} \right) = \frac{{ - \sin i_{1}^{'}\cos i_{2}^{'} + \cos i_{1}^{'}\sin i_{2}^{'}\cos \left( {\Delta \Omega '} \right)}}{{\sin \left( {\Delta i} \right)}},$$
$$\sin \left( {\Delta {{{\bar {\omega }}}_{2}}} \right) = \frac{{\sin i_{1}^{'}\sin \left( {\Delta \Omega '} \right)}}{{\sin \left( {\Delta i} \right)}},$$
(A1)
$$\cos \left( {\Delta {{{\bar {\omega }}}_{2}}} \right) = \frac{{\sin i_{2}^{'}\cos i_{1}^{'} - \cos i_{2}^{'}\sin i_{1}^{'}\cos \left( {\Delta \Omega '} \right)}}{{\sin \left( {\Delta i} \right)}}.$$

The components of the vector of the moment of forces (divided by the absolute value of the angular momentum of the second ring) acting from the first ring on the second are then transformed as

$$\frac{{M_{{\xi '}}^{{\left( 2 \right)}}}}{{{{L}^{{\left( 2 \right)}}}}} = \frac{{M_{\xi }^{{\left( 2 \right)}}}}{{{{L}^{{\left( 2 \right)}}}}}\cos \left( {\Delta {{{\bar {\omega }}}_{2}}} \right) - \frac{{M_{\eta }^{{\left( 2 \right)}}}}{{{{L}^{{\left( 2 \right)}}}}}\sin \left( {\Delta {{{\bar {\omega }}}_{2}}} \right),$$
$$\frac{{M_{{\eta '}}^{{\left( 2 \right)}}}}{{{{L}^{{\left( 2 \right)}}}}} = \frac{{M_{\xi }^{{\left( 2 \right)}}}}{{{{L}^{{\left( 2 \right)}}}}}\sin \left( {\Delta {{{\bar {\omega }}}_{2}}} \right) + \frac{{M_{\eta }^{{\left( 2 \right)}}}}{{{{L}^{{\left( 2 \right)}}}}}\cos \left( {\Delta {{{\bar {\omega }}}_{2}}} \right),$$
(A2)
$$\frac{{M_{{\zeta '}}^{{\left( 2 \right)}}}}{{{{L}^{{\left( 2 \right)}}}}} = \frac{{M_{\zeta }^{{\left( 2 \right)}}}}{{{{L}^{{\left( 2 \right)}}}}}.$$

COEFFICIENTS \(i_{{kl}}^{{\left( 2 \right)}}\), \({\bar {v}}_{{klm}}^{{\left( 2 \right)}}\), AND \(\Omega _{{klm}}^{{\left( 2 \right)}}\) IN THE RIGHT-HAND PARTS OF EQS. (39)

We provide the exact expressions for the remaining sixteen coefficients:

$$\begin{gathered} i_{{20}}^{{(2)}}\, = \,\left( {\frac{{1\, - \,3{{n}^{2}}\, + \,23{{n}^{4}}{\kern 1pt} + \,3{{n}^{6}}}}{{{{{(1 - n)}}^{2}}}}{\kern 1pt} E(k)\, - \,(1\, - \,{{n}^{2}}\, + \,3{{n}^{4}})K(k)} \right) \\ \times \;2n\sin {{\omega }_{1}}\cos {{\omega }_{1}}; \\ \end{gathered} $$
(B1)
$$\begin{gathered} i_{{02}}^{{(2)}}\, = \,\left( {\frac{{3\, + \,23{{n}^{2}}\, - \,3{{n}^{4}}{\kern 1pt} + \,{{n}^{6}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}{\kern 1pt} E(k)\, - \,(3\, - \,{{n}^{2}}\, + \,{{n}^{4}})K(k)} \right) \\ \times \;2n\sin {{\omega }_{2}}\cos {{\omega }_{2}}; \\ \end{gathered} $$
(B2)
$$\begin{gathered} i_{{11}}^{{\left( 2 \right)}} = \left( {\left( {\frac{{4 - 15{{n}^{2}} - 26{{n}^{4}} - 15{{n}^{6}} + 4{{n}^{8}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right.} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(4\, - \,11{{n}^{2}}\, + \,4{{n}^{4}})(1\, + \,{{n}^{2}})K(k)} \right){\kern 1pt} \cos {{\omega }_{1}}\sin {{\omega }_{2}} \\ - \;\left( {\frac{{4 - 9{{n}^{2}} + 58{{n}^{4}} - 9{{n}^{6}} + 4{{n}^{8}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {\left. {^{{^{{^{{^{{}}}}}}}} - \;(4\, - \,5{{n}^{2}}\, + \,4{{n}^{4}})(1\, + \,{{n}^{2}})K(k)} \right)\sin {{\omega }_{1}}\cos {{\omega }_{2}}} \right){\kern 1pt} ; \\ \end{gathered} $$
(B3)
$${\bar {v}}_{{102}}^{{\left( 2 \right)}} = \left( {\frac{{4 - 15{{n}^{2}} - 26{{n}^{4}} - 15{{n}^{6}} + 4{{n}^{8}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right.$$
$$\left. {^{{^{{^{{^{{}}}}}}}} - \;(4 - 11{{n}^{2}} + 4{{n}^{4}})(1 + {{n}^{2}})K(k)} \right)$$
$$ \times \;\cos {{\omega }_{1}}\cos {{\omega }_{2}} + \sin {{\omega }_{1}}\sin {{\omega }_{2}}$$
(B4)
$$ \times \;\left( {\frac{{4 - 21{{n}^{2}} - 110{{n}^{4}} - 21{{n}^{6}} + 4{{n}^{8}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right.$$
$$\left. {^{{^{{^{{^{{}}}}}}}} - \;(4 - {{n}^{2}})(1 - 4{{n}^{2}})(1 + {{n}^{2}})K(k)} \right);$$
$$\begin{gathered} {\bar {v}}_{{012}}^{{\left( 2 \right)}} = 2n\left( {\frac{{3 + 47{{n}^{2}} + 21{{n}^{4}} + {{n}^{6}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(3 + 5{{n}^{2}} + {{n}^{4}})K(k)} \right) \\ - \;\left( {\frac{{3 + 23{{n}^{2}} - 3{{n}^{4}} + {{n}^{6}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k) - (3 - {{n}^{2}} + {{n}^{4}})K(k)} \right) \\ \times \;4n{{\cos }^{2}}{\kern 1pt} {{\omega }_{2}}; \\ \end{gathered} $$
(B5)
$$\begin{gathered} {\bar {v}}_{{300}}^{{\left( 2 \right)}} = \left( {\frac{{9 + 50{{n}^{2}} - 15{{n}^{4}} + 4{{n}^{6}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(9 - 7{{n}^{2}} + 4{{n}^{4}})K(k)} \right){{n}^{2}}\cos \left( {{{\omega }_{2}} - {{\omega }_{1}}} \right); \\ \end{gathered} $$
(B6)
$$\begin{gathered} {\bar {v}}_{{210}}^{{\left( 2 \right)}} = 6n\left( {\frac{{(1 + {{n}^{2}})(1 - 4n + {{n}^{2}})(1 + 4n + {{n}^{2}})}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(1 - 5{{n}^{2}} + {{n}^{4}})K(k)} \right) \\ - \;\left( {\frac{{(1 + {{n}^{2}})(1 - 2n - {{n}^{2}})(1 + 2n - {{n}^{2}})}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \,(1\, - \,n\, - \,{{n}^{2}})(1\, + \,n\, - \,{{n}^{2}})K(k)} \right)\, \times \,12n{{\sin }^{2}}({{\omega }_{2}}\, - \,{{\omega }_{1}}); \\ \end{gathered} $$
(B7)
$$\begin{gathered} {\bar {v}}_{{120}}^{{\left( 2 \right)}} = \left( {\frac{{4 - 21{{n}^{2}} + 118{{n}^{4}} + 51{{n}^{6}} - 8{{n}^{8}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(1 - 3{{n}^{2}} + 8{{n}^{4}})(4 - {{n}^{2}})K(k)} \right)\cos \left( {{{\omega }_{2}} - {{\omega }_{1}}} \right); \\ \end{gathered} $$
(B8)
$$\begin{gathered} {\bar {v}}_{{100}}^{{\left( 2 \right)}} = \left( {\frac{{1 - {{n}^{2}} + {{n}^{4}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k) - (1 + {{n}^{2}})K(k)} \right) \\ \times \;16{{(1 - {{n}^{2}})}^{2}}\cos \left( {{{\omega }_{2}} - {{\omega }_{1}}} \right); \\ \end{gathered} $$
(B9)
$$\begin{gathered} {\bar {v}}_{{030}}^{{\left( 2 \right)}} = \left( {\frac{{1 + {{n}^{2}} - 25{{n}^{4}} - {{n}^{6}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(1 - 3{{n}^{2}} - {{n}^{4}})K(k)} \right) \times 2n; \\ \end{gathered} $$
(B10)
$${\bar {v}}_{{010}}^{{\left( 2 \right)}} = - \left( {\frac{{1 + {{n}^{2}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k) - K(k)} \right) \times 8n{{(1 - {{n}^{2}})}^{2}};$$
(B11)

other coefficients \({\bar {v}}_{{klm}}^{{\left( 2 \right)}} = 0\);

$$\begin{gathered} \Omega _{{002}}^{{\left( 2 \right)}} = \left( {\frac{{(1 + {{n}^{2}})(1 - 4n + {{n}^{2}})(1 + 4n + {{n}^{2}})}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(1 - 5{{n}^{2}} + {{n}^{4}})K(k)} \right)n; \\ \end{gathered} $$
(B12)
$$\begin{gathered} \Omega _{{200}}^{{\left( 2 \right)}} = \left( {\frac{{1 + 21{{n}^{2}} + 47{{n}^{4}} + 3{{n}^{6}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(1 + 5{{n}^{2}} + 3{{n}^{4}})K(k)} \right)n \\ - \;\left( {\frac{{1 - 3{{n}^{2}} + 23{{n}^{4}} + 3{{n}^{6}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(1 - {{n}^{2}} + 3{{n}^{4}})K(k)} \right) \times 2n{{\cos }^{2}}{\kern 1pt} {{\omega }_{1}}; \\ \end{gathered} $$
(B13)
$$\begin{gathered} \Omega _{{110}}^{{\left( 2 \right)}} = \left( {\frac{{4 - 15{{n}^{2}} - 26{{n}^{4}} - 15{{n}^{6}} + 4{{n}^{8}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(4\, - \,11{{n}^{2}}\, + \,4{{n}^{4}})(1\, + \,{{n}^{2}})K(k)} \right)\cos {{\omega }_{1}}\cos {{\omega }_{2}} \\ + \;\left( {\frac{{4 - 21{{n}^{2}} - 110{{n}^{4}} - 21{{n}^{6}} + 4{{n}^{8}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \,(4\, - \,{{n}^{2}})(1\, - \,4{{n}^{2}})(1\, + \,{{n}^{2}})K(k)} \right)\sin {{\omega }_{1}}\sin {{\omega }_{2}}{\kern 1pt} ; \\ \end{gathered} $$
(B14)
$$\begin{gathered} \Omega _{{020}}^{{\left( 2 \right)}} = \left( {\frac{{5 + 45{{n}^{2}} + 19{{n}^{4}} + 3{{n}^{6}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k)} \right. \\ \left. {^{{^{{^{{^{{}}}}}}}} - \;(5 + {{n}^{2}} + 3{{n}^{4}})K(k)} \right)n \\ - \;\left( {\frac{{3\, + \,23{{n}^{2}}\, - \,3{{n}^{4}}\, + \,{{n}^{6}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}{\kern 1pt} E(k)\, - \,(3\, - \,{{n}^{2}}\, + \,{{n}^{4}})K(k)} \right) \\ \times \;2n{{\cos }^{2}}{{\omega }_{2}}; \\ \end{gathered} $$
(B15)
$$\Omega _{{000}}^{{\left( 2 \right)}} = \left( {\frac{{1 + {{n}^{2}}}}{{{{{\left( {1 - n} \right)}}^{2}}}}E(k) - K(k)} \right) \times 4n{{(1 - {{n}^{2}})}^{2}};$$
(B16)

other coefficients \(\Omega _{{klm}}^{{\left( 2 \right)}} = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, B.P., Kornoukhov, V.S. Mutual Gravitational Energy of Gaussian Rings and the Problem of Perturbations in Celestial Mechanics. Astron. Rep. 64, 434–446 (2020). https://doi.org/10.1134/S1063772920060037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920060037

Navigation