Skip to main content
Log in

Polarization Properties of Weakly Relativistic Cylindrical Jets

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Jets can be not only ultrarelativistic, but also relativistic but with velocities appreciably lower than the speed of light. They can be launched not only by supermassive black holes in active galactic nuclei, but also by young, rapidly rotating stars (Herbig-Haro objects) and microquasars, which are binary systems displaying supercritical accretion onto a black hole (e.g., the SS 433 system) [1]. It is believed that the mechanisms for the launching of jets in these systems are related. The polarization properties of weakly relativistic cylindrical jets in an inhomogeneous magnetic field are studied in the geometrical optics approximation for the cases of isotropic and anisotropic distribution functions for the radiating particles. Various configurations for a helical magnetic field satisfying the force-free approximation are considered. In addition, the PLUTO code is used to model a jet with an inhomogeneous magnetic field. The intensity, spectrum, and polarization of gyrosynchrotron radiation of the jets are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Beskin, Axisymmetric Stationary Flows in Astrophysics (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  2. V. V. Zheleznyakov, Emission in Astrophysical Plasma (Yanus-K, Moscow, 1997) [in Russian].

    Google Scholar 

  3. G. D. Fleishman and V. F. Melnikov, Astrophys. J. 584, 1071 (2003).

    Article  ADS  Google Scholar 

  4. G. D. Fleishman and V. F. Melnikov, Astrophys. J. 587, 823 (2003).

    Article  ADS  Google Scholar 

  5. G. D. Fleishman and V. F. Mel’nikov, Phys. Usp. 41, 1157 (1998).

    Article  ADS  Google Scholar 

  6. V. V. Zheleznyakov and S. A. Koryagin, Astron. Lett. 28, 727 (2002).

    Article  ADS  Google Scholar 

  7. V. V. Zheleznyakov and S. A. Koryagin, Astron. Lett. 31, 713 (2005).

    Article  ADS  Google Scholar 

  8. O. Porth, C. Fendt, Z. Meliani, and B. Vaidya, Astrophys. J. 737, 42 (2011).

    Article  ADS  Google Scholar 

  9. V. I. Pariev, Ya. N. Istomin, and A. R. Beresnyak, Astron. Astrophys. 403, 805 (2003).

    Article  ADS  Google Scholar 

  10. M. Lyutikov, V. I. Pariev, and R. D. Blandford, Astrophys. J. 597, 998 (2003).

    Article  ADS  Google Scholar 

  11. M. Lyutikov, V. I. Pariev, and D. C. Gabuzda, Mon. Not. R. Astron. Soc. 360, 869 (2005).

    Article  ADS  Google Scholar 

  12. A. V. Chernoglazov, V. S. Beskin, and V. I. Pariev, Mon. Not. R. Astron. Soc. (in press).

  13. V. Ya. Eidman, Sov. Phys. JETP 7, 91 (1958).

    Google Scholar 

  14. V. Ya. Eidman, Sov. Phys. JETP 9, 947 (1959).

    MathSciNet  Google Scholar 

  15. H. B. Liemohn, Radio Sci. 69D, 741 (1965).

    Google Scholar 

  16. R. Ramaty, Astrophys. J. 158, 753 (1969).

    Article  ADS  Google Scholar 

  17. V. Petrosian, Astrophys. J. 251, 727 (1981).

    Article  ADS  Google Scholar 

  18. K.-L. Klein, Astron. Astrophys. 183, 341 (1987).

    ADS  Google Scholar 

  19. Ya. N. Istomin and V. I. Pariev, Mon. Not. R. Astron. Soc. 267, 629 (1994).

    Article  ADS  Google Scholar 

  20. Ya. N. Istomin and V. I. Pariev, Mon. Not. R. Astron. Soc. 281, 1 (1996).

    Article  ADS  Google Scholar 

  21. R. Narayan and A. Tchekhovskoy, Astrophys. J. 697, 1681 (2009).

    Article  ADS  Google Scholar 

  22. A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, and A. Ferrari, Astrophys. J. Suppl. 170, 228 (2007).

    Article  ADS  Google Scholar 

  23. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Nauka, Moscow, 1960; Addison Wesley, London, 1970).

    Google Scholar 

  24. V. V. Zheleznyakov, Astrophys. Space Sci. 2, 417 (1968).

    Article  ADS  Google Scholar 

  25. P. K. Leung, C. F. Gammie, and S. C. Noble, Astrophys. J. 737, 21 (2011).

    Article  ADS  Google Scholar 

  26. M. Lyutikov, V. I. Pariev, and D. C. Gabuzda, arXiv:astro-ph/0406144.

  27. A. Mignone, M. Ugliano, and G. Bodo, Mon. Not. R. Astron. Soc. 393, 1141 (2009).

    Article  ADS  Google Scholar 

  28. R. Quyed and R. Pudritz, Astrophys. J. 482, 712 (1997).

    Article  ADS  Google Scholar 

  29. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  30. V. L. Ginzburg, V. N. Sazonov, and S. I. Syrovatskii, Sov. Phys. Usp. 11, 34 (1968).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grants 19-02-00199-a, 17-02-00788-a, 17-52-45053-IND-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Chernov.

Additional information

Russian Text © The Author(s), 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 11, pp. 917–926.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, S.V. Polarization Properties of Weakly Relativistic Cylindrical Jets. Astron. Rep. 63, 910–919 (2019). https://doi.org/10.1134/S1063772919100020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919100020

Navigation