Skip to main content
Log in

Neutronization of matter in a stellar core and convection during gravitational collapse

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The roles of neutrinos and convective instability in collapsing supernovae are considered. Spherically symmetrical computations of the collapse using the Boltzmann equation for the neutrinos lead to the formation of the condition of convective instability, \({\left( {\frac{{\partial P}}{{\partial s}}} \right)_{\rho {Y_l}}}\frac{{ds}}{{dr}} + {\left( {\frac{{\partial P}}{{\partial {Y_L}}}} \right)_{\rho s}}\frac{{d{Y_L}}}{{dr}}\) < 0, in a narrow region of matter accretion above the neutrinosphere. If instability arises in this region, the three-dimensional solution will represent a correction to the spherically symmetrical solution for the gravitational collapse. The mean neutrino energies change only negligibly in the narrow region of accretion. Nuclear statistical equilibrium is usually assumed in the hot proto-neutron stellar core, to simplify the computations of the collapse. Neutronization with the participation of free neutrons is most efficient. However, the decay of nuclei into nucleons is hindered during the collapse, because the density grows too rapidly compared to the growth in the temperature, and an appreciable fraction of the energy is carried away by neutrinos. The entropy of the matter per nucleon is modest at the stellar center. All the energy is in degenerate electrons during the collapse. If the large energy of these degenerate electrons is taken into account, neutrons are efficiently formed, even in cool matter with reduced Y e (the difference between the numbers of electrons and positrons per nucleon). This process brings about an increase in the optical depth to neutrinos, the appearance of free neutrons, and an increase in the entropy per nucleon at the center. The convectively unstable region at the center increases. The development of large-scale convection is illustrated using a multi-dimensional gas-dynamical model for the evolution of a stationary, unstable state (without taking into account neutrino transport). The time for the development of convective instability (several milliseconds) does not exceed the time for the existence of the unstable region at the center (10ms). The realization of this type of instability is fundamentally different from a spherically symmetrical model. The flux of neutrinos changes and the mean energy of the neutrinos is increased, which has important implications for the detection of neutrinos from supernovae. For these same reasons, the energy absorped in the supernova envelope also changes in the transition to such a multi-dimensional model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Imshennik and D. K. Nadyozhin, Sov. Phys. Usp. 31, 1040 (1988).

    Google Scholar 

  2. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).

    Article  ADS  Google Scholar 

  3. K. A. van Riper, Astrophys. J. 257, 793 (1982).

    Article  ADS  Google Scholar 

  4. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).

    Article  ADS  Google Scholar 

  5. W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. Ser. 9, 201 (1964).

    Article  ADS  Google Scholar 

  6. S. A. Colgate and R. H. White, Astrophys. J. 143, 626 (1966).

    Article  ADS  Google Scholar 

  7. V. S. Imshennik and D. K. Nadyozhin, Sov. Phys. JETP 36, 821 (1972).

    ADS  Google Scholar 

  8. D. K. Nadyozhin, Astrophys. Space Sci. 51, 283 (1977).

    Article  ADS  Google Scholar 

  9. P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1: Equation of State and Structure, Astrophysics and Space Science Library (Springer, Berlin, 2007).

    Book  Google Scholar 

  10. I. V. Baikov and V. M. Chechetkin, Astron. Rep. 48, 229 (2004).

    Article  ADS  Google Scholar 

  11. M. Rees, R. Ruffini, and J. A. Wheeler, Black Holes, Gravitational Waves and Cosmology: An Introduction to Current Research (Gordon and Breach, New York, 1974).

    Google Scholar 

  12. V. S. Berezinsky, C. Castagnoly, V. I. Dokuchaev, and P. Galeotty, Nuovo Cim. 11C, 287 (1988).

    Article  ADS  Google Scholar 

  13. V. S. Imshennik, Sov. Astron. Lett. 18, 194 (1992).

    ADS  Google Scholar 

  14. G. S. Bisnovatyi-Kogan and S. G. Moiseenko, Phys. Part. Nucl. 39, 1128 (2008).

    Article  Google Scholar 

  15. S. Chandrasekhar and N. R. Lebovitz, Astrophys. J. 138, 185 (1963).

    Article  ADS  Google Scholar 

  16. G. S. Bisnovatyi-Kogan and Z. F. Seidov, Sov. Astron. 14, 113 (1970).

    ADS  Google Scholar 

  17. V. S. Imshennik and V. M. Chechetkin, Sov. Astron. 14, 747 (1970).

    ADS  Google Scholar 

  18. S. W. Bruenn, Astrophys. J. Suppl. Ser. 58, 771 (1985).

    Article  ADS  Google Scholar 

  19. E. V. Bugaev, G. S. Bisnovatyi-Kogan, M. A. Rudzsky, and Z. F. Seidov, Nucl. Phys. A 324, 350 (1979).

    Article  ADS  Google Scholar 

  20. S. S. Gershtein, V. S. Imshennik, D. K. Nadyozhin, V. N. Folomeshkin, M. Yu. Khlopov, V. M. Chechetkin, and R. A. Eramzhan, Sov. Phys. JETP 42, 751 (1975).

    ADS  Google Scholar 

  21. S. M. Couch and C. D. Ott, Astrophys. J. Lett. 778, L7 (2013).

    Article  ADS  Google Scholar 

  22. V.M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Lett. 20, 30 (1994).

    Google Scholar 

  23. V. Bychkov, M. V. Popov, A. M. Oparin, L. Stenflo, and V. M. Chechetkin, Astron. Rep. 50, 298 (2006).

    Article  ADS  Google Scholar 

  24. I. V. Baikov, V. M. Suslin, V.M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).

    Article  ADS  Google Scholar 

  25. H. A. Bethe and M. B. Johnson, Nuc. Phys. A 230, 1 (1974).

    Article  ADS  Google Scholar 

  26. G. S. Bisnovatyi-Kogan, Physical Problems in the Theory of Stellar Evolution (Nauka,Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  27. G. S. Bisnovatyi-Kogan, Astrophysics 55, 387 (2012).

    Article  ADS  Google Scholar 

  28. A.G. Aksenov and S. I. Blinnikov, Astron. Astrophys. 290, 674 (1994).

    ADS  Google Scholar 

  29. V. M. Suslin, S. D. Ustyugov, V. M. Chechetkin, and G. P. Churkina, Astron. Rep. 45, 241 (2001).

    Article  ADS  Google Scholar 

  30. A. G. Aksenov, Comput.Math. Math. Phys. 55, 1752 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Aksenov.

Additional information

Original Russian Text © A.G. Aksenov, V.M. Chechetkin, 2016, published in Astronomicheskii Zhurnal, 2016, Vol. 93, No. 7, pp. 642–655.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksenov, A.G., Chechetkin, V.M. Neutronization of matter in a stellar core and convection during gravitational collapse. Astron. Rep. 60, 655–668 (2016). https://doi.org/10.1134/S1063772916070015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772916070015

Navigation