Skip to main content
Log in

Supernova-Explosion Mechanism Involving Neutrinos

  • Elementary Particles and Fields Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A major part of the energy released upon the gravitational collapse of massive-star cores is carried away by neutrinos. Neutrinos play a crucial role in collapsing supernovae (SNe). At the present time, mathematical models of core-collapse SNe are based on multidimensional gas dynamics and thermonuclear reactions, whereas the neutrino transport is frequently treated in simplified way. An accurate analysis of neutrinos in a spherically symmetric gravitational collapse is performed on the basis of Boltzmann kinetic equations including all weak-interaction reactions with exact quantum-mechanical matrix elements. The role of multidimensional effects is studied bymeans of multidimensional gas dynamics allowing for the neutrino transport via diffusion treated by employing flux limiters. The possibility of largescale convection, which is of interest both from the point of view of explaining a type II supernova (SN) and from the point of view of implementing an experiment aimed at detecting possible energetic (≳10 MeV) neutrinos from an SN, is discussed. Thermonuclear burning leads to the explosion of a type I SN. A hot central region and the subsequent large-scale convection may also play an important role in the SN mechanism. If neutrinos and convection play a key role for a type II SN, then, in order to explain gamma radiation from product radioactive elements, convection is of importance in the case of SNe belonging to both types. In addition, convection may be important for bright type I SNe. Original methods are presented for multidimensional gas dynamics involving thermonuclear burning and for multitemperature gas dynamics involving radiative transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. U.S.A. 20, 254 (1934).

    Article  ADS  Google Scholar 

  2. W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. U.S.A. 20, 259 (1934).

    Article  ADS  Google Scholar 

  3. H.-T. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012); arXiv: 1206.2503.

    Article  ADS  Google Scholar 

  4. S. J. Smartt, Ann. Rev. Astron. Astrophys. 47, 63 (2009); arXiv: 0908.0700.

    Article  ADS  Google Scholar 

  5. S. A. Colgate and R. H. White, Astrophys. J. 143, 626 (1966).

    Article  ADS  Google Scholar 

  6. H. Bethe and R. Peierls, Nature 133, 532 (1934).

    Article  ADS  Google Scholar 

  7. G. Gamow and M. Schoenberg, Phys. Rev. 59, 539 (1941).

    Article  ADS  Google Scholar 

  8. D. K. Nadezhin and V. M. Chechetkin, Sov. Astron. 13, 213 (1969).

    ADS  Google Scholar 

  9. W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).

    Article  ADS  Google Scholar 

  10. A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hüdepohl, and S. Chakraborty, Riv. Nuovo Cimento 39, 1 (2016); arXiv: 1508.00785.

    Google Scholar 

  11. V. S. Imshennik and D. K. Nadezhin, Sov. Sci. Rev., Ser. E: Astrophys. Space Phys. 7, 75 (1989).

    Google Scholar 

  12. H. A. Bethe, Rev. Mod. Phys. 62, 801 (1990).

    Article  ADS  Google Scholar 

  13. H.-T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007); astro-ph/0612072.

    Article  ADS  Google Scholar 

  14. D. Arnett, Can. J. Phys. 45, 1621 (1967).

    Article  ADS  Google Scholar 

  15. V. S. Imshennik and D. K. Nadezhin, Sov. Phys. JETP 36, 821 (1973).

    ADS  Google Scholar 

  16. D. K. Nadyozhin, Astrophys. Space Sci. 49, 399 (1977).

    Article  ADS  Google Scholar 

  17. Neutron Stars 1: Equation of State and Structure, Vol. 326 of Astrophysics and Space Science Library, Ed. by P. Haensel, A. Y. Potekhin, and D. G. Yakovlev (Springer, New York, 2007).

  18. S.W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).

    Article  ADS  Google Scholar 

  19. M. L. Alme and J. R. Wilson, Astrophys. J. 186, 1015 (1973).

    Article  ADS  Google Scholar 

  20. L. Dessart, A. Burrows, E. Livne, and C. D. Ott, Astrophys. J. 673, L43 (2008), arXiv: 0710.5789.

    Article  ADS  Google Scholar 

  21. F. D. Swesty and E. S. Myra, Astrophys. J. Suppl. 181, 1 (2009).

    Article  ADS  Google Scholar 

  22. B. Müller, H.-T. Janka, and H. Dimmelmeier, Astrophys. J. Suppl. 189, 104 (2010), ArXiv: 1001.4841.

    Article  ADS  Google Scholar 

  23. A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 637 (1993).

    Article  ADS  Google Scholar 

  24. A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 669 (1993).

    Article  ADS  Google Scholar 

  25. A. Mezzacappa and S.W. Bruenn, Astrophys. J. 410, 740 (1993).

    Article  ADS  Google Scholar 

  26. A. Mezzacappa, M. Liebendörfer, O. E. Messer, W. R. Hix, F.-K. Thielemann, and S.W. Bruenn, Phys. Rev. Lett. 86, 1935 (2001); astro-ph/0005366.

    Article  ADS  Google Scholar 

  27. E. J. Lentz, A. Mezzacappa, O. E. B. Messer, M. Liebendörfer, W. R. Hix, and S. W. Bruenn, Astrophys. J. 747, 73 (2012); arXiv: 1112.3595.

    Article  ADS  Google Scholar 

  28. M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994), astroph/ 9404024.

    Article  ADS  Google Scholar 

  29. A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995); astro-ph/9506061.

    Article  ADS  Google Scholar 

  30. J. W. Murphy and C. Meakin, Astrophys. J. 742, 74 (2011); arXiv: 1106.5496.

    Article  ADS  Google Scholar 

  31. J. C. Dolence, A. Burrows, and W. Zhang, Astrophys. J. 800, 10 (2015); arXiv: 1403.6115.

    Article  ADS  Google Scholar 

  32. S. M. Couch and C. D. Ott, Astrophys. J. 778, L7 (2013); arXiv: 1309.2632.

    Article  ADS  Google Scholar 

  33. A. Wongwathanarat, E. Müller, and H.-T. Janka, Astron. Astrophys. 577, A48 (2015); arXiv: 1409.5431.

    Article  ADS  Google Scholar 

  34. S. M. Couch and C. D. Ott, Astrophys. J. 799, 5 (2015); arXiv: 1408.1399.

    Article  ADS  Google Scholar 

  35. D. Radice, C. D. Ott, E. Abdikamalov, S. M. Couch, R. Haas, and E. Schnetter, Astrophys. J. 820, 76 (2016); arXiv: 1510.05022.

    Article  ADS  Google Scholar 

  36. V.M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Lett. 23, 30 (1997).

    ADS  Google Scholar 

  37. V. M. Suslin, M. Yu. Khlopov, V. M. Chechetkin, and V. A. Chuyanov, Astron. Rep. 40, 358 (1996).

    ADS  Google Scholar 

  38. A. Burrows, Astrophys. J. 318, L57 (1987).

    Article  ADS  Google Scholar 

  39. R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, and A. Ciocio, Phys. Rev. Lett. 58, 1494 (1987).

    Article  ADS  Google Scholar 

  40. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama, Phys. Rev. Lett. 58, 1490 (1987).

    Article  ADS  Google Scholar 

  41. E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheiko, JETP Lett. 45, 589 (1987).

    ADS  Google Scholar 

  42. R. Schaeffer, Y. Declais, and S. Jullian, Nature 330, 142 (1987).

    Article  ADS  Google Scholar 

  43. M. V. Popov, A. A. Filina, A. A. Baranov, P. Chardonnet, and V. M. Chechetkin, Astrophys. J. 783, 43 (2014).

    Article  ADS  Google Scholar 

  44. V. S. Imshennik, N. L. Kal’yanova, A. V. Koldoba, and V.M. Chechetkin, Astron. Lett. 25, 206 (1999).

    ADS  Google Scholar 

  45. L N. Ivanova, V. S. Imshennik, and V. M. Chechetkin, Sov. Astron. Lett. 8, 8 (1982).

    ADS  Google Scholar 

  46. L. N. Ivanova, V. S. Imshennik, and V. M. Chechetkin, Astrophys. Space Sci. 31, 497 (1974).

    Article  ADS  Google Scholar 

  47. M. V. Popov, S. D. Ustyugov, and V. M. Chechetkin, Astron. Rep. 48, 921 (2004).

    Article  ADS  Google Scholar 

  48. V. Bychkov, M. V. Popov, A. M. Oprin, and L. Stenflo, Astron. Rep. 50, 298 (2006).

    Article  ADS  Google Scholar 

  49. W. Hillebrandt, S. A. Sim, and F. K. Röpke, Astron. Astrophys. 465, L17 (2007); astro-ph/0702344.

    Article  ADS  Google Scholar 

  50. J. I. Castor, Astrophys. J. 178, 779 (1972).

    Article  ADS  Google Scholar 

  51. D. L. Tubbs and D. N. Schramm, Astrophys. J. 201, 467 (1975).

    Article  ADS  Google Scholar 

  52. A. G. Aksenov, Astron. Lett. 24, 482 (1998).

    ADS  Google Scholar 

  53. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).

    Article  ADS  Google Scholar 

  54. G. V. Vereshchagin and A. G. Aksenov, Relativistic Kinetic Theory with Applications in Astrophysics and Cosmology (Cambridge Univ. Press, Cambridge, 2017).

    Book  MATH  Google Scholar 

  55. A. G. Aksenov, M. Milgrom, and V. V. Usov, Astrophys. J. 609, 363 (2004); astro-ph/0309014.

    Article  ADS  Google Scholar 

  56. I. V. Baikov and V. M. Chechetkin, Astron. Rep. 48, 229 (2004).

    Article  ADS  Google Scholar 

  57. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).

    Article  ADS  Google Scholar 

  58. S.W. Bruenn, Phys. Rev. Lett. 59, 938 (1987).

    Article  ADS  Google Scholar 

  59. V.M. Suslin, S. D. Ustyugov, and V. M. Chechetkin, Astron. Rep. 45, 241 (2001).

    Article  ADS  Google Scholar 

  60. I. V. Baikov, V. M. Suslin, V. M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).

    Article  ADS  Google Scholar 

  61. P. Ledoux, Astrophys. J. 105, 305 (1947).

    Article  ADS  MathSciNet  Google Scholar 

  62. G. S. Bisnovatyi-Kogan, Physical Problems of the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  63. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 60, 655 (2016).

    Article  ADS  Google Scholar 

  64. A. G. Aksenov, Comput. Math. Math. Phys. 55, 1752 (2015).

    Article  MathSciNet  Google Scholar 

  65. A. G. Aksenov, Astron. Lett. 25, 185 (1999).

    ADS  Google Scholar 

  66. G. S. Bisnovatyi-Kogan, Astrophysics 55, 387 (2012); arXiv: 1203.0997.

    Article  ADS  Google Scholar 

  67. M. V. Popov, Grav. Cosmol. 11, 177 (2005).

    ADS  Google Scholar 

  68. I. Hachisu, Astrophys. J. Suppl. 61, 479 (1986).

    Article  ADS  Google Scholar 

  69. S. Chandrasekhar and N. R. Lebovitz, Astrophys. J. 138, 185 (1963).

    Article  ADS  Google Scholar 

  70. A. A. Baranov and V.M. Chechetkin, Astron. Rep. 55, 525 (2011)

    Article  ADS  Google Scholar 

  71. V. M. Chechetkin, R. A. Eramzhyan, V. N. Folomeshkin, S. S. Gerstein, V. S. Imshennik, M. Y. Khlopov, and D. K. Nadyozhin, Phys. Lett. B 62, 100 (1976).

    Article  ADS  Google Scholar 

  72. V. S. Imshennik, Sov. Astron. Lett. 18, 194 (1992).

    ADS  Google Scholar 

  73. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2002; Cambridge Int. Science, Boston, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Chechetkin, A.G. Aksenov, 2018, published in Yadernaya Fizika, 2018, Vol. 81, No. 1, pp. 114–124.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chechetkin, V.M., Aksenov, A.G. Supernova-Explosion Mechanism Involving Neutrinos. Phys. Atom. Nuclei 81, 128–138 (2018). https://doi.org/10.1134/S106377881801009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881801009X

Navigation