Skip to main content
Log in

Physical differences between the initial phase of the formation of two types of coronal mass ejections

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Physical differences in the formation of “gradual” and “impulsive” coronal mass ejections (CMEs) at heights of h < 0.2 R just before and during the initial phase of their motion are studied using AIA/SDO ultraviolet data (h is the altitude above the solar surface and R is the solar radius). The basic structure of a gradual CME is a magnetic rope located in the corona. During an hour or more preceding the initial phase, the magnetic rope demonstrates an increase in brightness and transverse size, first of the low, inner elements of the rope and then of elements in its outer envelope most distant from the Sun. The rope remains motionless during this time. The initial phase of a gradual CME begins from the motion of the magnetic rope’s outer envelope, which further becomes the basis for the CME frontal structure. At this stage, the inner low elements of the rope remain almost motionless. The initial phase of an impulsive CME begins with the appearance near the photosphere of a cavity moving away from the Sun; the dynamics of this cavity probably correspond to a magnetic tube filled with cool plasma rising from beneath the photosphere. This magnetic tube collides with and drags arch structures, which initially block the tube’s motion. These arch structures contribute to the CME formation, although the magnetic tube itself forms the basis of the CME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. T. Gallagher, G. R. Lawrence, and B. R. Dennis, Astrophys. J. Lett. 588, L53 (2003).

    Article  ADS  Google Scholar 

  2. J. Zhang, K. P. Dere, R. A. Howard, et al., Astrophys. J. 559, 452 (2001).

    Article  ADS  Google Scholar 

  3. J. Zhang, K. P. Dere, R. A. Howard, et al., Astrophys. J. 604, 420 (2004).

    Article  ADS  Google Scholar 

  4. D. Maricic, B. Vrsnak, B. Stanger, et al., Solar Phys. 225, 337 (2004).

    Article  ADS  Google Scholar 

  5. M. Temmer, A. M. Veronig, E. P. Kontar, et al., Astrophys. J. 712, 1410 (2010).

    Article  ADS  Google Scholar 

  6. B. M. Bein, S. Berkebile-Stoiser, A. Veronig, et al., Astrophys. J. 738, 191 (2011).

    Article  ADS  Google Scholar 

  7. N. Gopalswamy, A. Lara, M. L. Kaizer, et al., Geophys. Res. Lett. 27, 145 (2000).

    Article  ADS  Google Scholar 

  8. N. R. Sheeley, Jr., H. Walter, Y. M. Wang, et al., J. Geophys. Res. 104, 24739 (1999).

    Article  ADS  Google Scholar 

  9. R. M. MacQueen and R. R. Fisher, Solar Phys. 89, 89 (1983).

    Article  ADS  Google Scholar 

  10. V. G. Eselevich and M. V. Eselevich, Geomagn. Aeron. 51, 1083 (2011).

    Article  ADS  Google Scholar 

  11. V. A. Romanov, D. V. Romanov, and K. V. Romanov, Astron. Rep. 37, 625 (1993).

    ADS  Google Scholar 

  12. V. A. Romanov, D. V. Romanov, and K. V. Romanov, Astron. Rep. 37, 630 (1993).

    ADS  Google Scholar 

  13. V. G. Eselevich and M. V. Eselevich, Astron. Rep. 57, 860 (2013).

    Article  ADS  Google Scholar 

  14. J. R. Lemen, A. M. Title, D. J. Akin, et al., Solar Phys. 275, 17 (2012).

    Article  ADS  Google Scholar 

  15. S. Patsourakos, A. Vourlidas, and G. Stenborg, Astrophys. J. 764, 125 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Eselevich.

Additional information

Original Russian Text © V.G. Eselevich, M.V. Eselevich, 2014, published in Astronomicheskii Zhurnal, 2014, Vol. 91, No. 4, pp. 320–331.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eselevich, V.G., Eselevich, M.V. Physical differences between the initial phase of the formation of two types of coronal mass ejections. Astron. Rep. 58, 260–271 (2014). https://doi.org/10.1134/S1063772914030032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772914030032

Keywords

Navigation