Skip to main content
Log in

Magnetic-field structure in the accretion disks of semi-detached binary systems

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The results of three-dimensional MHD numerical simulations are used to investigate the characteristic properties of the magnetic-field structures in the accretion disks of semi-detached binary systems. It is assumed that the intrinsic magnetic field of the accretor star is dipolar. Turbulent diffusion of the magnetic field in the disk is taken into account. The SS Cyg system is considered as an example. The results of the numerical simulations show the intense generation of a predominantly toroidal magnetic field in the accretion disk. Magnetic zones with well defined structures for the toroidal magnetic field form in the disk, which are separated by current sheets in which there ismagnetic reconnection and current dissipation. Possible observational manifestations of such structures are discussed. It is shown that the interaction of a spiral precessional wave with the accretor’s magnetosphere could lead to quasi-periodic oscillations of the accretion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Warner, Cataclysmic Variable Stars (Cambridge Univ., Cambridge, 1995).

    Google Scholar 

  2. C. G. Campbell,Magnetohydrodynamics in Binary Stars (Kluwer Acad., Dordrecht, 1997).

    Google Scholar 

  3. V.M. Lipunov, Astrophysics of Neutron Stars (Nauka, Moscow, 1987; Springer, Heidelberg, 1992).

    Google Scholar 

  4. A. V. Koldoba, M. M. Romanova, G. V. Ustyugova, and R. V. E. Lovelace,Astrophys. J. 576, L53 (2002).

    Article  ADS  Google Scholar 

  5. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, et al., Astrophys. J. 595, 1009 (2003).

    Article  ADS  Google Scholar 

  6. A. J. Norton, J. A. Wynn, and R. V. Somerscales, Astrophys. J. 614, 349 (2004).

    Article  ADS  Google Scholar 

  7. A. J. Norton, O. W. Butters, T. L. Parker, and G. A. Wynn, Astrophys. J. 672, 524 (2008).

    Article  ADS  Google Scholar 

  8. A. G. Zhilkin and D. V. Bisikalo, Astron. Zh. 86, 475 (2009) [Astron. Rep. 53, 436 (2009)].

    Google Scholar 

  9. A. G. Zhilkin and D. V. Bisikalo, Adv. Space Res. 45, 437 (2010).

    Article  ADS  Google Scholar 

  10. A. Z. Dolginov, Usp. Fiz. Nauk 152, 231 (1987) [Sov. Phys. Usp. 30, 475 (1987)].

    ADS  Google Scholar 

  11. A. Herzenberg, Phil. Trans. R. Soc. London. Ser. A 250, 543 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Brandenburg, D. Moss, and A. M. Soward, Proc. R. Soc. London. Ser. A 454, 1283 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. G. S. Bisnovatyi-Kogan and A. A. Ruzmaikin, Astrophys. Space Sci. 28, 45 (1974).

    Article  ADS  Google Scholar 

  14. G. S. Bisnovatyi-Kogan and A. A. Ruzmaikin, Astrophys. Space Sci. 42, 401 (1976).

    Article  ADS  Google Scholar 

  15. D. M. Rothstein and R. V. E. Lovelace, Astrophys. J. 677, 1221 (2008).

    Article  ADS  Google Scholar 

  16. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Zh. 81, 494 (2004) [Astron. Rep. 48, 449 (2004)].

    Google Scholar 

  17. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Zh. 82, 701 (2005) [Astron. Rep. 49, 701 (2005)].

    Google Scholar 

  18. S. I. Braginsky, Zh. Eksp. Teor. Fiz. 47, 2178 (1964) [Sov. Phys. JETP 20, 1462 (1964)].

    Google Scholar 

  19. E. Parker, Cosmical Magnetic Fields (Claredon, Oxford, 1979; Mir,Moscow, 1982).

    Google Scholar 

  20. H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ., Cambridge, 1978).

    Google Scholar 

  21. S. I. Vainshtein, Ya. B. Zel’dovich, and A. A. Ruzmaikin, Turbulent Dynamos in Astrophysics (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  22. E. N. Parker, Astrophys. J. 163, 255 (1971).

    Article  ADS  Google Scholar 

  23. R. E. Pudritz, Mon. Not. R. Astron. Soc. 195, 897 (1981).

    ADS  MATH  Google Scholar 

  24. T. F. Stepinski and E. H. Levy, Astrophys. J. 362, 318 (1990).

    Article  ADS  Google Scholar 

  25. G. Rudiger, D. Elstner, and T. F. Stepinski, Astron. Astrophys. 298, 934 (1995).

    ADS  Google Scholar 

  26. C. G. Campbell, Mon. Not. R. Astron. Soc. 361, 396 (2005).

    Article  ADS  Google Scholar 

  27. A. A. Ruzmaikin, D. D. Sokoloff, and A. M. Shukurov, Magnetic Fields of Galaxies (Nauka, Moscow, 1988; Kluwer, Dordrecht, 1988).

    Google Scholar 

  28. A. Brandenburg, A. Nordlund, R. F. Stein, and U. Torkelsson, Astrophys. J. 446, 741 (1995).

    Article  ADS  Google Scholar 

  29. U. Ziegler and G. Rudiger, Astron. Astrophys. 356,1141 (2000).

    ADS  Google Scholar 

  30. E. P. Velikhov, Zh. Eksp. Teor. Fiz. 36, 1398 (1959) [Sov. Phys. JETP 9, 995 (1959)].

    Google Scholar 

  31. S. A. Balbus and J. F. Hawley, Rev.Mod. Phys. 70, 1 (1998).

    Article  ADS  Google Scholar 

  32. A. Brandenburg and D. Sokoloff, Geophys. Astrophys. Fluid Dyn. 96, 319 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  33. B. von Rekowski, A. Brandenburg, W. Dobler, and A. Shukurov, Astron. Astrophys. 398, 825 (2003).

    Article  ADS  Google Scholar 

  34. R. D. Blandford and D. G. Payne, Mon. Not. R. Astron. Soc. 199, 883 (1982).

    ADS  MATH  Google Scholar 

  35. D. P. Cox and E. Daltabuit, Astrophys. J. 167, 113 (1971).

    Article  ADS  Google Scholar 

  36. A. Dalgarno and R. A. McCray, Ann. Rev. Astron. Astrophys. 10, 375 (1972).

    Article  ADS  Google Scholar 

  37. J. C. Raymond, D. P. Cox, and B. W. Smith, Astrophys. J. 204, 290 (1976).

    Article  ADS  Google Scholar 

  38. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  39. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Zh. 80, 879 (2003) [Astron. Rep. 47, 809 (2003)].

    Google Scholar 

  40. A. G. Zhilkin, Matem. Modelir. 22, 110 (2010).

    MATH  Google Scholar 

  41. A. G. Zhilkin, Zh. Vychisl.Mat. Mat. Fiz. 47, 1898 (2007) [Comput.Math.Math. Phys. 47, 1819 (2007)].

    MathSciNet  Google Scholar 

  42. T. Tanaka, J. Comp. Phys. 111, 381 (1994).

    Article  ADS  MATH  Google Scholar 

  43. K. G. Powell, P. L. Roe, T. J. Linde, et al., J. Comp. Phys. 154, 284 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. P. J. Dellar, J. Comp. Phys. 172, 392 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. A. A. Samarskii, Introduction to the Theory of Differential Schemes (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  46. F. Giovannelli, S. Gaudenzi, C. Rossi, and A. Piccioni, Acta Astron. 33, 319 (1983).

    ADS  Google Scholar 

  47. G. Fabbiano, L. Hartmann, J. Raymond, et al., Astrophys. J. 243, 911 (1981).

    Article  ADS  Google Scholar 

  48. D. Kjurkchieva, D. Marchev, and W. Ogloza, Astropys. Space Sci. 262, 53 (1999).

    Article  ADS  Google Scholar 

  49. F. Giovanelli and L. Sabau-Graziati, Mem. Soc. Astron. Ital. 70, 987 (1999).

    ADS  Google Scholar 

  50. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Zhilkin, D.V. Bisikalo, 2010, published in Astronomicheskiĭ Zhurnal, 2010, Vol. 87, No. 9, pp. 913–926.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhilkin, A.G., Bisikalo, D.V. Magnetic-field structure in the accretion disks of semi-detached binary systems. Astron. Rep. 54, 840–852 (2010). https://doi.org/10.1134/S1063772910090088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772910090088

Keywords

Navigation