Skip to main content
Log in

Condensation of heavy elements on dust grains in interstellar clouds

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A possibility of an efficient condensation of heavy elements, such as iron, on the surface of dust grains in interstellar molecular clouds is studied. A high rate of dust destruction in the interstellar medium from one side, and a high degree of heavy elements depletion from the other indicate that the freezing-out of metals should be efficient in interstellar (predominantly molecular) clouds. This is possible only due to betatron acceleration of dust grains behind shocks that originate under intersection of supersonic turbulent flow. Estimates of the heavy elements depletion due to condensation on the surface of dust grains are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. T. Draine and E. E. Salpeter, Astrophys. J. 231, 438 (1979).

    Article  ADS  Google Scholar 

  2. C. F. McKee, in Interstellar Dust, Ed. by L. J. Allamandola and A. G. G. M. Tielens (Dordrecht, Kluwer, 1989), p. 431.

    Google Scholar 

  3. B. D. Savage and K. R. Sembach, Ann. Rev. Astron. Astrophys. 34, 279 (1996).

    Article  ADS  Google Scholar 

  4. J. E. OTDonnel and J. S. Mathis, Astrophys. J. 479, 806 (1997).

    Article  ADS  Google Scholar 

  5. G. Wallerstein and G. R. Knapp, Ann. Rev. Astron. Astrophys. 36, 369 (1998).

    Article  ADS  Google Scholar 

  6. A. G. G. M. Tielens, in Formation and Evolution of Solids in Space, Ed. by J. M. Greenbergand A. Li (Dordrecht, Kluwer, 1999), p. 331.

    Google Scholar 

  7. G. R. Knapp, in Tetons 4: Galactic Structure, Stars and the InterstellarMedium, ASP Conf. Ser. 231, 127 (2001).

    ADS  Google Scholar 

  8. J. L. Linsky, B. T. Draine, H. W. Moos, et al., Astrophys. J. 647, 1106 (2006).

    Article  ADS  Google Scholar 

  9. J. C. Weingartner and B. T. Draine, Astrophys. J. 517, 292 (1999).

    Article  ADS  Google Scholar 

  10. S. E. Bisschop, H. J. Fraser, K. I. Oberg, et al., Astron. Astrophys. 449, 1297 (2006).

    Article  ADS  Google Scholar 

  11. T. Klamroth and P. Saalfrank, J. Chem. Phys. 112, 10571 (2000).

    Article  ADS  Google Scholar 

  12. E. E. Matvienko and Yu. A. Shchekinov, Astron. Zh. 84, 128 (2006) [Astron. Rep. 51, 109 (2007)].

    Google Scholar 

  13. J. C. Weingartner and B. T. Draine, Astrophys. J. 548, 296 (2001).

    Article  ADS  Google Scholar 

  14. R. I. Klein, C. F. McKee, and P. Colella, Astrophys. J. 420, 213 (1994).

    Article  ADS  Google Scholar 

  15. H. Yan, A. Lazarian, and B. T. Draine, Astrophys. J. 616, 895 (2004).

    Article  ADS  Google Scholar 

  16. L. Spitzer, Comm. Astrophys. Space Phys. 6, 157 (1976).

    ADS  Google Scholar 

  17. J.M. Shull, Astrophys. J. 215, 805 (1977).

    Article  ADS  Google Scholar 

  18. J.M. Shull, Astrophys. J. 226, 858 (1978).

    Article  ADS  Google Scholar 

  19. B. T. Draine, in The Cold Universe, Saas-Fee Advanced Course 32, Ed. by A. W. Blain, F. Combes, B. T. Draiue, D. Pfenniger and Y. Revaz (Springer, Berlin, 2004), p. 213.

    Google Scholar 

  20. M. Oppenheimer and A. Dalgarno, Astrophys. J. 192, 29 (1974).

    Article  ADS  Google Scholar 

  21. L. Blitz, in The Physics of Star Formation and Early Stellar Evolution, Ed. by C. J. Lada and N. D. Kylafis (Dordrecht, Kluwer, 1991), p. 3.

    Google Scholar 

  22. L. Blitz and J. P. Williams, in The Origin of Stars and Planetary Systems, Ed. by C. J. Lada and N. D. Kylafis (Dordrecht, Kluwer, 1999), p. 3.

    Google Scholar 

  23. P. M. Solomon, A. R. Rivolo, J. Barret, et al., Astrophys. J. 319, 730 (1987).

    Article  ADS  Google Scholar 

  24. S. A. Kaplan, Cosmic Gas Dynamics (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  25. R. B. Larson, Mon. Not. R. Astron. Soc. 186, 479 (1979).

    ADS  Google Scholar 

  26. J. W. Armstrong, B. J. Rickett, and S. R. Spangler, Astrophys. J. 443, 209 (1995).

    Article  ADS  Google Scholar 

  27. C. Heiles, Astrophys. J. 551, L105 (2001).

    Article  ADS  Google Scholar 

  28. B. T. Draine, in Protostars and Planets II, Ed. by D. C. Black and M. S. Matthews (Univ. Arizona, Tucson, 1985), p. 621.

    Google Scholar 

  29. R. Beck, e-Print arXiv:astro-ph/0310287 (2003).

  30. L. V. Kostyukova, V. V. Prudskikh, and Yu. A. Shchekinov, Physics of Plasmas, in press (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shchekinov.

Additional information

Original Russian Text © Yu.A. Shchekinov, 2009, published in Astronomicheskiĭ Zhurnal, 2009, Vol. 86, No. 7, pp. 654–660.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shchekinov, Y.A. Condensation of heavy elements on dust grains in interstellar clouds. Astron. Rep. 53, 605–610 (2009). https://doi.org/10.1134/S1063772909070038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772909070038

PACS numbers

Navigation