Skip to main content
Log in

Effect of Dust Evaporation on the Fossil Magnetic Field of Young Stars and Their Accretion Disks

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The theory of the fossil magnetic field of young stars and their accretion disks has been verified by comparing the observational data with the results of numerical simulations of the collapse of protostellar clouds. A new model of dust evaporation has been proposed, in which the parameter is not the thickness of the mantles, but the initial ratio of the core radius to the mantle radius of a dust grain. A semi-analytical description of the evolution of the radius distribution of dust grains was constructed. On its basis, the variations in the relative number density of dust grains, as well as the average values of the radius, cross-sectional area, and mass of dust grains, were calculated. It was shown that at the stage of disappearance of dust cores, these averages reach their maxima, but this does not affect the interaction of dust with gas particles, since the dust becomes scarce. Using cloud models W3 (main), NGC 2024, and DR 21 OH1, it has been demonstrated that neglecting dust evaporation underestimates the fossil magnetic field by several times. The possibility of formation of a magnetic compaction at the outer boundary of the zone of strong magnetic field diffusion (dead zone) has been confirmed. It is concluded that a correct calculation of dust evolution, ionization of the medium, and collapse anisotropy makes it possible to match the theoretical and observed magnetic fields of young stars and their accretion disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. E. Dudorov and S. A. Khaibrakhmanov, in Stars: From Collapse to Collapse, Proceedings of a Conference, Nizhny Arkhyz, Russia, October 3–7, 2016, Ed. by Yu. Yu. Balega, D. O. Kudryavtsev, I. I. Romanyuk, and I. A. Yakunin (Astron. Soc. Pacif., San Francisco, 2017), p. 114.

  2. J. Braithwaite and H. Spruit, R. Soc. Open Sci. 4, 160271 (2017).

  3. A. S. Brun and M. K. Browning, Liv. Rev. Solar Phys. 14, 4 (2017).

    Article  ADS  Google Scholar 

  4. B. B. Karak, M. Rheinhardt, A. Brandenburg, P. J. Kapyla, and M. J. Kapyla, Astrophys. J. 795, 16 (2014).

    Article  ADS  Google Scholar 

  5. A. S. Jermyn and M. Cantiello, Astrophys. J. 900, 113 (2020).

    Article  ADS  Google Scholar 

  6. D. Moss, Astron. Astrophys. 414, 1065 (2004).

    Article  ADS  Google Scholar 

  7. N. A. Featherstone, M. K. Browning, A. S. Brun, and J. Toomre, Astrophys. J. 705, 1000 (2009).

    Article  ADS  Google Scholar 

  8. D. A. Frank-Kamenetskii, Lectures on Plasma Physics (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  9. L. E. Cram, Astrophys. J. 234, 949 (1979).

    Article  ADS  Google Scholar 

  10. R. M. Crutcher, Astrophys. J. 520, 706 (1999).

    Article  ADS  Google Scholar 

  11. A. E. Dudorov, S. A. Khaibrakhmanov, and A. M. Sobolev, Mon. Not. R. Astron. Soc. 487, 5388 (2019).

    Article  ADS  Google Scholar 

  12. A. F. Kholtygin, O. A. Tsiopa, E. I. Makarenko, and I. M. Tumanova, Astrophys. Bull. 74, 293 (2019).

    Article  ADS  Google Scholar 

  13. F. Villebrun, E. Alecian, G. Hussain, J. Bouvier, et al., Astron. Astrophys. 622, A72 (2019).

    Article  Google Scholar 

  14. C. M. Johns-Krull, Astrophys. J. 664, 975 (2007).

    Article  ADS  Google Scholar 

  15. J.-F. Donati, F. Paletou, J. Bouvier, and J. Ferreira, Nature (London, U.K.) 438, 466 (2005).

    Article  ADS  Google Scholar 

  16. J. F. J. Bryson, B. P. Weiss, J. B. Biersteker, A. J. King, and S. S. Russell, Astrophys. J. 896, 103 (2020).

    Article  ADS  Google Scholar 

  17. W. H. T. Vlemmings, B. Lankhaar, P. Cazzoletti, C. Ceccobello, et al., Astron. Astrophys. 624, L7 (2019).

    Article  ADS  Google Scholar 

  18. R. E. Harrison, L. W. Looney, I. W. Stephens, Z.-Y. Li, et al., Astrophys. J. 908, 141 (2021).

    Article  ADS  Google Scholar 

  19. S. M. Houghton and P. J. Bushby, Mon. Not. R. Astron. Soc. 412, 555 (2011).

    Article  ADS  Google Scholar 

  20. Y. Kawasaki, S. Koga, and M. N. Machida, Mon. Not. R. Astron. Soc. 504, 5588 (2021).

    Article  ADS  Google Scholar 

  21. M. R. Bate, T. S. Tricco, and D. J. Price, Mon. Not. R. Astron. Soc. 437, 77 (2014).

    Article  ADS  Google Scholar 

  22. A. Bhandare, R. Kuiper, T. Henning, C. Fendt, M. Flock, and G.-D. Marleau, Astron. Astrophys. 638, A86 (2020).

    Article  ADS  Google Scholar 

  23. G. Wuchterl and W. M. Tscharnuter, Astron. Astrophys. 398, 1081 (2003).

    Article  ADS  Google Scholar 

  24. G. A. Feiden and B. Chaboyer, Astrophys. J. 761, 30 (2012).

    Article  ADS  Google Scholar 

  25. A. Hujeirat, P. Myers, M. Camenzind, and A. Burkert, New Astron. 4, 601 (2000).

    Article  ADS  Google Scholar 

  26. S. N. Zamozdra, Cand. Sci. (Phys. Math.) Dissertation (Chelyabinsk, 2010).

  27. R. Mignon-Risse, M. Gonzalez, B. Commercon, and J. Rosdahl, Astron. Astrophys. 652, A69 (2021).

    Article  ADS  Google Scholar 

  28. A. E. Dudorov and Yu. V. Sazonov, Nauch. Inform. Astron. Sov. AN SSSR 63, 68 (1987).

    Google Scholar 

  29. M. W. Kunz and T. C. Mouschovias, Mon. Not. R. Astron. Soc. 408, 322 (2010).

    Article  ADS  Google Scholar 

  30. Y. Tsukamoto, K. Iwasaki, S. Okuzumi, M. N. Machida, and S. Inutsuka, Mon. Not. R. Astron. Soc. 452, 278 (2015).

    Article  ADS  Google Scholar 

  31. J. Wurster, M. R. Bate, and D. J. Price, Mon. Not. R. Astron. Soc. 481, 2450 (2018).

    Article  ADS  Google Scholar 

  32. N. Vaytet, B. Commercon, J. Masson, M. Gonzalez, and G. Chabrier, Astron. Astrophys. 615, A5 (2018).

    Article  ADS  Google Scholar 

  33. G. Morfill, S. Roeser, H. Voelk, and W. Tscharnuter, Moon Planets 19, 211 (1978).

    Article  ADS  Google Scholar 

  34. V. Guillet, P. Hennebelle, G. P. des Forets, A. Marcowith, B. Commercon, and P. Marchand, Astron. Astrophys. 643, A17 (2020).

    Article  Google Scholar 

  35. P. Lenzuni, H.-P. Gail, and T. Henning, Astrophys. J. 447, 848 (1995).

    Article  ADS  Google Scholar 

  36. W. J. Duschl, H.-P. Gail, and W. M. Tscharnuter, Astron. Astrophys. 312, 624 (1996).

    ADS  Google Scholar 

  37. S. N. Zamozdra and A. G. Zhilkin, Astron. Astrophys. Trans. 27, 517 (2012).

    ADS  Google Scholar 

  38. P. Marchand, J. Masson, G. Chabrier, P. Hennebelle, B. Commercon, and N. Vaytet, Astron. Astrophys. 592, A18 (2016).

    Article  ADS  Google Scholar 

  39. I. Bauer, F. Finocchi, W. J. Duschl, H.-P. Gail, and J. P. Schloder, Astron. Astrophys. 317, 273 (1997).

    ADS  Google Scholar 

  40. K. Lodders, Space Sci. Rev. 217, 44 (2021).

    ADS  Google Scholar 

  41. K. M. Pontoppidan, C. Salyk, E. A. Bergin, S. Brittain, B. Marty, O. Mousis, and K. I. Oberg, in Protostars and Planets VI (Univ. Arizona Press, 2014), p. 363. https://hal.archives-ouvertes.fr/hal-01346297 .

    Google Scholar 

  42. Ya. N. Pavlyuchenkov, A. G. Zhilkin, E. I. Vorobyov, and A. M. Fateeva, Astron. Rep. 59, 133 (2015).

    Article  ADS  Google Scholar 

  43. H. W. Yorke, Astron. Astrophys. 80, 308 (1979).

    ADS  Google Scholar 

  44. Y. V. Skorov, L. Rezac, P. Hartogh, and H. U. Keller, Astron. Astrophys. 600, A142 (2017).

    Article  ADS  Google Scholar 

  45. F. P. Fanale and J. R. Salvail, Icarus 60, 476 (1984).

    Article  ADS  Google Scholar 

  46. T. Nakano, R. Nishi, and T. Umebayashi, Astrophys. J. 573, 199 (2002).

    Article  ADS  Google Scholar 

  47. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978).

    Google Scholar 

  48. I. S. Grigor’ev and E. Z. Meilikhov, Handbook of Physical Quantities (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, NY, 1996).

  49. A. E. Dudorov and Yu. V. Sazonov, Nauch. Inform. Astron. Sov. AN SSSR 49, 114 (1981).

    Google Scholar 

  50. H. Masunaga and S. Inutsuka, Astrophys. J. 531, 350 (2000).

    Article  ADS  Google Scholar 

  51. J. B. Pollack, D. Hollenbach, S. Beckwith, D. P. Simonelli, T. Roush, and W. Fong, Astrophys. J. 421, 615 (1994).

    Article  ADS  Google Scholar 

  52. V. I. Shematovich, D. S. Wiebe, B. M. Shustov, and Z.‑Y. Li, Astrophys. J. 588, 894 (2003).

    Article  ADS  Google Scholar 

  53. B. Zhao, P. Caselli, and Z.-Y. Li, Mon. Not. R. Astron. Soc. 478, 2723 (2018).

    ADS  Google Scholar 

  54. W. R. Webber, Astrophys. J. 506, 329 (1998).

    Article  ADS  Google Scholar 

  55. F. Finocchi and H.-P. Gail, Astron. Astrophys. 327, 825 (1997).

    ADS  Google Scholar 

  56. M. W. Kunz and T. C. Mouschovias, Astrophys. J. 693, 1895 (2009).

    Article  ADS  Google Scholar 

  57. D. McElroy, C. Walsh, A. J. Markwick, M. A. Cordiner, K. Smith, and T. J. Millar, Astron. Astrophys. 550, A36 (2013).

    Article  ADS  Google Scholar 

  58. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic Press, New York, 1966, 1967).

  59. C. W. Allen, Astrophysical Quantities (Athlone Press, London, 1973).

    Google Scholar 

  60. C.-C. Yang, M.-M. Mac Low, and A. Johansen, Astrophys. J. 868, 27 (2018).

    ADS  Google Scholar 

  61. W. Lyra, A. Johansen, A. Zsom, H. Klahr, and N. Piskunov, Astron. Astrophys. 497, 869 (2009).

    Article  ADS  Google Scholar 

  62. K. Tassis and T. C. Mouschovias, Astrophys. J. 618, 783 (2005).

    Article  ADS  Google Scholar 

  63. D. Semenov and D. Wiebe, Astrophys. J. Suppl. 196, 25 (2011).

    Article  Google Scholar 

  64. R. J. Tayler, Mon. Not. R. Astron. Soc. 227, 553 (1987).

    Article  ADS  Google Scholar 

  65. A. E. Dudorov, Astron. Rep. 39, 790 (1995).

    ADS  Google Scholar 

  66. C. P. Folsom, P. Petit, J. Bouvier, A. Lebre, et al., Mon. Not. R. Astron. Soc. 457, 580 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

The dust evolution model (Section 2) was developed with the financial support of the Russian Science Foundation (project no. 19-72-10012). The effect of dust evaporation on the fossil magnetic field (Section 3) was investigated with the financial support of the Russian Foundation for Basic Research (project no. 20-42-740013-Ural).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Zamozdra.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudorov, A.E., Zamozdra, S.N. Effect of Dust Evaporation on the Fossil Magnetic Field of Young Stars and Their Accretion Disks. Astron. Rep. 66, 200–220 (2022). https://doi.org/10.1134/S1063772922040035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922040035

Keywords:

Navigation