Skip to main content
Log in

Evolution of a filament due to magnetic-field variations in a complex active region

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The complex active region NOAA 9672 is studied when it was near the central meridian, from October 21–26, 2001. At that time, there was an emergence of new magnetic flux, with the ongoing formation of a filament. The dynamics of the magnetic field are studied in order to search for their possible manifestations in the filament structure, using SOHO MDI magnetograms, SOHO EIT and TRACE filtergrams in the 171 Å line, and Hα filtergrams available via the Internet. Our earlier conclusion that filaments form at the boundaries of supergranules near polarity-inversion lines is confirmed. The conclusion of Chae that sinistral filaments have positive magnetic helicity is also confirmed. New information about magnetic-field decay processes is obtained. The direction of motion of the magnetic poles and their relative positions suggest that the axial field of a filament forms as a result of either reconnection of cancelling magnetic poles, or emergence of horizontal magnetic-flux tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Jiang and J. Wang, Astron. Astrophys. 356, 1055 (2000).

    ADS  Google Scholar 

  2. J. Chae, Astrophys. J. 560, 476 (2001).

    Article  ADS  Google Scholar 

  3. B. Schmieder, N. Mein, Y. Deng, et al., Sol. Phys. 223, 119 (2004).

    Article  ADS  Google Scholar 

  4. M. Grigor’ev, L. V. Ermakova, and A. I. Khlystova, Astron. Zh. 81, 64 (2004) [Astron. Rep. 48, 58 (2004)].

    Google Scholar 

  5. S. H. B. Livi, J. Wang, and S. F. Martin, Austral. J. Phys. 38, 855 (1985).

    ADS  Google Scholar 

  6. S. F. Martin, S. H. B. Livi, and J. Wang, Austral. J. Phys. 38, 929 (1985).

    ADS  Google Scholar 

  7. K. L. Harvey, H. P. Jones, C. J. Schrijver, and M. J. Penn, Sol. Phys. 190, 35 (1999).

    Article  ADS  Google Scholar 

  8. Y. E. Litvinenko and S. F. Martin, Sol. Phys. 190, 45 (1999).

    Article  ADS  Google Scholar 

  9. F. Martin, Sol. Phys. 182, 107 (1998).

    Article  ADS  Google Scholar 

  10. S. F. Martin, Coronal and Prominence Plasmas, Ed. by A. I. Poland, NASA Conf. Publ. No. 2442, p. 73 (1986).

  11. J. Chae, Astrophys. J. Lett. 540, L115 (2000).

    Article  ADS  Google Scholar 

  12. C. Zwaan, Sol. Phys. 60, 213 (1978).

    Article  ADS  Google Scholar 

  13. R. A. Shine, G. W. Simon, and N. E. Hurlburt, Sol. Phys. 193, 313 (2000).

    Article  ADS  Google Scholar 

  14. Solar Vector Magnetograms 2001 (Solar Activity World Data Center, National Astronomical Observatory of Japan, 2002).

  15. D. S. Brown, R. W. Nightingale, D. Alexander, et al., Sol. Phys. 216, 79 (2003).

    Article  ADS  Google Scholar 

  16. P. Wood and P. Martens, Sol. Phys. 218, 123 (2003).

    Article  ADS  Google Scholar 

  17. P. C. Martens and C. Zwaan, Astrophys. J. 558, 872 (2001).

    Article  ADS  Google Scholar 

  18. J. Chae, Astrophys. J. 584, 1084 (2003).

    Article  ADS  Google Scholar 

  19. D. M. Rust, J. Geophys. Res. 106, 25 075 (2001).

    Google Scholar 

  20. J. Chae, C. Denker, T. J. Spirock, et al., Sol. Phys. 195, 333 (2000).

    Article  ADS  Google Scholar 

  21. J. Chae, Y. Moon, H. Wang, and H. S. Yun, Sol. Phys. 207, 73 (2002).

    Article  ADS  Google Scholar 

  22. J. L. Leroy, V. Bommier, and S. Sahal-Brechot, Sol. Phys. 83, 135 (1983).

    Article  ADS  Google Scholar 

  23. S. F. Martin, R. Bilimoria, and P. W. Tracadas, Solar Surface Magnetisms (Springer-Verlag, New York, 1994), p. 303.

    Google Scholar 

  24. V. M. Grigoryev and L. V. Ermakova, Astron. Astrophys. Trans. 17, 355 (1999).

    ADS  Google Scholar 

  25. D. M. Rust and A. Kumar, Sol. Phys. 155, 69 (1994).

    Article  ADS  Google Scholar 

  26. E. M. Drobyshevski and V. S. Yuferev, J. Fluid Mech. 65, 38 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Grigor’ev, L.V. Ermakova, A.I. Khlystova, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 5, pp. 464–474.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigor’ev, V.M., Ermakova, L.V. & Khlystova, A.I. Evolution of a filament due to magnetic-field variations in a complex active region. Astron. Rep. 50, 411–421 (2006). https://doi.org/10.1134/S1063772906050106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772906050106

PACS numbers

Navigation