Skip to main content
Log in

Study on Denoising Method of Surface Defect Signal of Rail Based on CEEMD and Wavelet Soft Threshold

  • PHYSICAL FOUNDATIONS OF TECHNICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Laser ultrasonic detection of rail defects has become a new method of rail nondestructive testing. Obtaining accurate rail defect signal is a prerequisite to judge the size of defects and avoid train accidents and ensure driving safety. In order to effectively improve the SNR of defect echo, a denoising algorithm combining CEEMD and wavelet soft threshold was proposed. First, CEEMD decomposition was performed on the signal to determine the demarcation point k of IMF components by autocorrelation function. The signal after k + 1 component was reconstructed. Then, the reconstructed signals were decomposed by wavelet transform. The high frequency coefficients after soft threshold processing and the low frequency coefficients of wavelet transform were reconstructed to complete the denoising of rail surface defect signals. The rail with defect of a depth of 0.5 mm and a width of 0.5 mm was tested and verified by laser ultrasonic experiment. By experiment the denoising method combining CEEMD and wavelet soft threshold suppressed effectively the noise. It retained the detailed characteristics of the defective reflected waves. It achieved the good denoising characteristics. It improves the signal-to-noise ratio by 7.12 and 0.77 dB, respectively, over the EMD denoising algorithm and CEEMD denoising algorithm at 1 dB noise intensity and improves the signal-to-noise ratio by 3.37 and 1.23 dB, respectively, over the EMD denoising algorithm and CEEMD denoising algorithm at 20 dB noise intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. S. Alahakoon, Y. Q. Sun, M. Spiryagin, and C. Cole, J. Dyn. Syst., Meas., Control. 140 (2), 020801 (2018).

    Article  Google Scholar 

  2. N. Montinaroa, G. Epastob, D. Cernigliaa, et al., NDT E Int. 107, 102145 (2019).

    Article  Google Scholar 

  3. H. Zhang, Y. Song, Y. Wang, Z. Liang, and M. Zhao, Chin. J. Sci. Instrum. 40 (2), 11 (2019).

    CAS  Google Scholar 

  4. M. T. Baysari, A. S. Mcintosh, and J. R. Wilson, Accid. Anal. Prev. 40 (5), 1750 (2008).

    Article  PubMed  Google Scholar 

  5. X. Wu, L. Miao, W. Liao, et al., Nondestruct. Testing 43 (4), 16 (2021).

    CAS  Google Scholar 

  6. G. Tian, B. Gao, Y. Gao, et al., Chin. J. Sci. Instrum. 37 (8), 1763 (2016).

    Google Scholar 

  7. S. Choi and K. Y. Jhang, J. Mech. Sci. Technol. 32, 4191 (2008).

    Article  Google Scholar 

  8. M. Pathak, S. Alahakoon, M. Sporyagin, and C. Cole, Measurement 148, 106922 (2019).

    Article  Google Scholar 

  9. Yu. G. Sokolovskaya, N. B. Podymova, and A. A. Karabutov, Acoust. Phys. 66 (1), 86 (2020).

    ADS  Google Scholar 

  10. H. Guo, B. Zheng, Y. Liu, et al., J. Test Meas. Technol. 33 (5), 393 (2019).

    Google Scholar 

  11. Y. Jiang, H. Wang, S. Chen, and G. Tian, Optik 237, 166732 (2021).

    Article  ADS  CAS  Google Scholar 

  12. M. A. Mironov, P. A. Pyatakov, and S. A. Shulyapov, Acoust. Phys. 67 (6), 648 (2021).

    Article  ADS  Google Scholar 

  13. Y. Li, H. Trinh, N. Haas, C. Otto, and S. Pankanti, IEEE Trans. Intell. Transp. Syst. 15 (2), 760 (2014).

    Article  Google Scholar 

  14. A. Kirichenko, V. Yu. Vishnevetskiy, I. B. Starchenko, T. P. Strochan, A. I. Markolia, and I. I. Sizov, Acoust. Phys. 67 (3), 286 (2021).

    Article  ADS  Google Scholar 

  15. P. Singh and G. Pradhan, Aust. Phys. Eng. Sci. Med. 41 (4), 891 (2018).

    Article  ADS  Google Scholar 

  16. Q. Yi, H. Wang, R. Guo, S. Li, and Y. Jiang, Optik. 149, 206 (2017).

    Article  ADS  CAS  Google Scholar 

  17. Z. Wu, Y. Wang, F. Xiao, and J. Hefei, Univ. Technol. (Nat. Sci.) 44 (7), 869 (2021).

    Google Scholar 

  18. Y. Duan and C. Song, Opt. Rev. 23 (6), 936 (2016).

    Article  Google Scholar 

  19. Z. Sun, X. Xi, C. Yuan, Y. Yang, and X. Hua, Math. Biosci. Eng. 17 (6), 6945 (2020).

    Article  MathSciNet  PubMed  Google Scholar 

  20. M. Sun, Z. Li, Z. Li, Q. Li, Y. Liu, and J. Wang, IEEE Access. 8, 71951 (2020).

    Article  Google Scholar 

  21. H. Rong, Y. Gao, L. Guan, Q. Zhang, and N. Li, Sensors 19 (16), 3564 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. W.Q. Han, A.J. Gu, and J. Zhou, J. Nondestruct. Eval. 38 (3), 1 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key Laboratory of Information and Detection of China (ISPT2020-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Hua-Ling.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua-Ling, G., Bin, Z., Li-Ping, L. et al. Study on Denoising Method of Surface Defect Signal of Rail Based on CEEMD and Wavelet Soft Threshold. Acoust. Phys. 69, 929–935 (2023). https://doi.org/10.1134/S1063771022600504

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022600504

Keywords:

Navigation