Skip to main content
Log in

Relevant modes selection method based on Spearman correlation coefficient for laser signal denoising using empirical mode decomposition

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Empirical mode decomposition (EMD) is a recently proposed nonlinear and nonstationary laser signal denoising method. A noisy signal is broken down using EMD into oscillatory components that are called intrinsic mode functions (IMFs). Thresholding-based denoising and correlation-based partial reconstruction of IMFs are the two main research directions for EMD-based denoising. Similar to other decomposition-based denoising approaches, EMD-based denoising methods require a reliable threshold to determine which IMFs are noise components and which IMFs are noise-free components. In this work, we propose a new approach in which each IMF is first denoised using EMD interval thresholding (EMD-IT), and then a robust thresholding process based on Spearman correlation coefficient is used for relevant modes selection. The proposed method tackles the problem using a thresholding-based denoising approach coupled with partial reconstruction of the relevant IMFs. Other traditional denoising methods, including correlation-based EMD partial reconstruction (EMD-Correlation), discrete Fourier transform and wavelet-based methods, are investigated to provide a comparison with the proposed technique. Simulation and test results demonstrate the superior performance of the proposed method when compared with the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Swinkels, B.L., Bhattacharya, N., Braat, J.J.M.: Correcting movement errors in frequency-sweeping interferometry. Opt. Lett. 30(17), 2242 (2005)

    Article  ADS  Google Scholar 

  2. Cabral, A., Rebordao, J.: Accuracy of frequency-sweeping interferometry for absolute distance metrology. Opt. Eng. 46(7), 73602 (2007)

    Article  Google Scholar 

  3. Donoho, D.L., Johostone, I.M.: Ideal spatial adaptation via wavelet shrinkage. Biometrika. 81(3), 425 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yan, R., Gao, R., Chen, X.F.: Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process 96, 1 (2014)

    Article  Google Scholar 

  6. Huang, N.E., Huang, Z.S., Long, S.R., Wu, M.C., Zheng, S.Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 454, 903 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Huang, N.E., Long, S.R., Shen, Z.: Frequency downshift in non-linear water wave evolution. Adv. Appl. Mech. 32, 59 (1996)

    Article  MATH  Google Scholar 

  8. Huang, N.E.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London (1998)

  9. Huang, N.E.: The Ages of Large Amplitude Coastal Seiches on the Caribbean Coast of Puerto Rico. Phys. Oceanogr. 30(8), 405 (2000)

    Article  Google Scholar 

  10. Kopsinis, Y., McLaughlin, S.: Empirical mode decomposition based denoising techniques. 1st IAPR International Workshop on Cognitive Information Processing (CIP 2008)

  11. Kopsinis, Y., Mclanglin, S.: Empirical mode decomposition based soft thresholding. In: Proceedings of the 16th European Signal Processing Conference (EUSIPCO 2008)

  12. Kopsinis, Y., Mclanglin, S.: Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Trans. Signal Process 57(4), 1351 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Li, M., Li, H.J., Xiong, X.L.: A novel EMD selecting thresholding method based on multiple iteration for denoising LIDAR signal. Opt. Rev. 22, 477 (2015)

    Article  MathSciNet  Google Scholar 

  14. Wu, Z., Huang, N.E.: A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. 460(2046), 1597 (2004)

    Article  ADS  MATH  Google Scholar 

  15. Boudraa, A.O., Cexus, J.C.: EMD-based signal filtering. IEEE Trans. Instrum. Meas. 56(6), 2196 (2007)

    Article  Google Scholar 

  16. Peng, Z.K., Peter, W.T., Chu, F.L.: Comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing. Mech. Syst. Signal Process. 19(5), 974 (2005)

    Article  ADS  Google Scholar 

  17. Ayenu-Prah, A., Attoh-Okine, N.: A criterion for selecting relevant intrinsic mode functions in empirical mode decomposition. Adv. Adapt. Data Anal. 2(1), 1 (2010)

    Article  MATH  Google Scholar 

  18. Tang, Y.W., Tai, C.C., Su, C.C.: A correlated empirical mode decomposition method for partial discharge signal denoising. Meas. Sci. Technol. 21(8), 085 (2010)

    Article  Google Scholar 

  19. Yang, G.L., Liu, Y.Y., Wang, Y.Y., Zhou, Z.L.: EMD interval thresholding denoising based on similarity measure to select relevant modes. Signal Process. 109, 95 (2015)

    Article  Google Scholar 

  20. Komaty, A., Boudraa, A.O., Dare, D.: EMD-based filtering using the Hausdoff distance. Proceedings of IEEE International Symposium on Signal Processing and Information Technology (ISSPIT 2012)

  21. Komaty, A., Boudraa, A.O., Augier, B., Dare-Emzivat, D.: EMD-based filtering using similarity measure between probability density functions of IMFs. IEEE Trans. Instrum. Meas. 63(1), 27–34 (2014)

    Article  Google Scholar 

  22. Rilling, G., Flandrin, P.: One or two frequencies: the empirical mode decomposi-tion answers. IEEE Trans. Signal Process. 56, 85 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn: The Sparse Way. Academic Press, New York (1999)

    MATH  Google Scholar 

  24. Zhang, S.Y., Liu, Y.Y., Liu, Y.G.: EMD Iiterval thresholding denoising based on correlation coefficient to select relevant modes. Proceedings of the 34th Chinese Control Conference, 4801 (2015)

  25. Lehman, A.: Jmp for Basic Univariate and Multivariate Statistics: A Step-by-Step Guide, p. 123. SAS Press, Cary (2005)

    Google Scholar 

  26. Myers, J.L., Well, A.D.: Research Design and Statistical Analysis, 2nd edn. Lawrence Erlbaum Associates, New Jersey (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengtian Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Song, C. Relevant modes selection method based on Spearman correlation coefficient for laser signal denoising using empirical mode decomposition. Opt Rev 23, 936–949 (2016). https://doi.org/10.1007/s10043-016-0275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0275-x

Keywords

Navigation