Skip to main content
Log in

Internal Thermal Effects in Axial Paratellurite-Based Acoustooptic Deflector

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The thermal angular deviation of the zero and working orders in an axial paratellurite-based acoustooptic deflector is experimentally investigated at a control power up to 6.5 W in the continuous mode. Regional measurements (near the transducer, in the middle, and at the sound absorber) are performed for variants of +1 and –1 working order diffraction and show a linear dependence of the angular deviation on the control power. A qualitative description of deviation of the working order as a combined action of two factors is proposed: (1) zeroth-order deviation at passage of two thermal optically denser prisms attached to the transducer and sound absorber and (2) reduction in the diffraction angle due to the growth in the sound speed at crystal heating. The inhomogeneity of the temperature field cannot be used to uniquely separate the contributions of these factors to the averaged working-order deviation. It is shown that the technology of the liquid contact between the endface surface of a piezoelectric transducer and the body increases the stability of the deflector parameters as light passes in the zone adjacent to the transducer. It is revealed that for +1 order diffraction there is a zone with a minimum thermal deviation between the piezoelectric transducer and the absorber. This is explained by the mutual compensation between the zeroth-order deviation (in the field of the thermal optical wedge from the absorber) and the factor of increased in sound speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. N. Magdich and V. Ya. Molchanov, Acoustic and Optical Devices and Their Application (Gordon and Breach, New York, 1989) [in Russian].

  2. J. Sapriel, Acousto-Optics (Wiley, New York, 1979).

    Google Scholar 

  3. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Foundations of Acoustical Optics (Radio i svyaz’, Moscow, 1985) [in Russian].

  4. A. Korpel, Acousto-Optics (Marcel Dekker Inc., 1988; Mir, Moscow, 1993).

  5. J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, New York, 1992).

    Google Scholar 

  6. Design and Fabrication of Acousto-Optic Devices, Ed. by A. P. Goutzoulis and D. R. Pape (Marcel Dekker, New York, 1988).

    Google Scholar 

  7. A. S. Zadorin, Dynamics of Acoustic and Optical Interaction (Tomsk State Univ., Tomsk, 2004) [in Russian].

    Google Scholar 

  8. V. Ya. Molchanov, Yu. I. Kitaev, A. I. Kolesnikov, V. N. Narver, A. Z. Rozenshtein, N. P. Solodovnikov, and K. G. Shapovalenko, Modern Acoustical Optics: Theory and Practice (National Univ. of Science and Technology “MISIS”, Moscow, 2015) [in Russian].

  9. Yaoqing Chu, Yaogang Li, Zengwei Ge, Guoqing Wu, and Hongzhi Wang, J. Cryst. Growth 295 (2), 158 (2006). https://doi.org/10.1016/j.jcrysgro.2006.08.009

    Article  ADS  Google Scholar 

  10. N. P. Skvortsova, V. A. Lomonov, and A. V. Vinogradov, Crystallogr. Rep. 56 (1), 67 (2011). https://doi.org/10.1134/S1063774510061136

    Article  ADS  Google Scholar 

  11. A. E. Kokh, V. S. Shevchenko, V. A. Vlezko, and K. A. Kokh, J. Cryst. Growth 384, 1 (2013). https://doi.org/10.1016/j.jcrysgro.2013.08.027

    Article  ADS  Google Scholar 

  12. S. N. Antonov, E. V. Kuznetsova, B. I. Mirgorodskii, and V. V. Proklov, Sov. Phys. Acoust. 28 (4), 257 (1982).

    Google Scholar 

  13. V. N. Belyi, N. S. Kazak, V. K. Pavlenko, E. G. Katranzhi, and S. N. Kurilkina, Acoust. Phys. 43 (2), 129 (1997).

    ADS  Google Scholar 

  14. N. F. Declercq, N. V. Polikarpova, V. B. Voloshinov, O. Leroy, and J. Degrieck, Ultrasonics 44 (Suppl. P), e833 (2006). https://doi.org/10.1016/j.ultras.2006.05.113

    Article  Google Scholar 

  15. S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, Tech. Phys. 55 (3), 413 (2010).

    Article  Google Scholar 

  16. E. A. D’yakonov, V. B. Voloshinov, and N. V. Polikarpova, Acoust. Phys. 58 (1), 107 (2012). https://doi.org/10.1134/S1063771012010071

    Article  ADS  Google Scholar 

  17. V. I. Balakshy and S. N. Mantsevich, Acoust. Phys. 58 (5), 549 (2012). https://doi.org/10.1134/S1063771012050041

    Article  ADS  Google Scholar 

  18. N. F. Naumenko, K. B. Yushkov, and V. Y. Molchanov, Eur. Phys. J. Plus 136 (1), Art. No. 95 (2021). https://doi.org/10.1140/epjp/s13360-021-01072-0

    Article  Google Scholar 

  19. V. Balakshy, V. Voloshinov, V. Karasev, V. Molchanov, and V. Semenkov, Proc. SPIE–Int. Soc. Opt. Eng. 2713, 164 (1996). https://doi.org/10.1117/12.234185

  20. S. Tretiakov, R. Grechishkin, A. Kolesnikov, I. Kaplunov, K. Yushkov, V. Molchanov, and B. B. J. Linde, Acta Phys. Pol., A 127 (1), 72 (2015). https://doi.org/10.12693/APhysPolA.127.72

    Article  ADS  Google Scholar 

  21. A. P. Belousov, P. Ya. Belousov, and L. A. Borynyak, Izv. Tomsk. Politekh. Univ. 325 (2), 137 (2014).

    Google Scholar 

  22. S. N. Mantsevich, T. V. Yukhnevich, and V. B. Voloshinov, Opt. Spektrosk. 122 (4), 694 (2017). https://doi.org/10.1134/S0030400X17040166

    Article  Google Scholar 

  23. V. Zarubin, K. Yushkov, A. Chizhikov, V. Molchanov, S. Tretiakov, A. Kolesnikov, E. Cherepetskaya, and A. Karabutov, Proc. Meet. Acoust. 32 (1), 032002 (2018). https://doi.org/10.1121/2.0000722

    Article  Google Scholar 

  24. V. P. Zarubin, K. B. Yushkov, A. I. Chizhikov, O. Yu. Makarov, V. Ya. Molchanov, S. A. Tretiakov, A. I. Kolesnikov, E. B. Cherepetskaya, and A. A. Karabutov, NDT E Int. 98, 171 (2018). https://doi.org/10.1016/j.ndteint.2018.05.010

    Article  Google Scholar 

  25. S. N. Mantsevich and E. I. Kostyleva, Ultrasonics 91, 45 (2019). https://doi.org/10.1016/j.ultras.2018.07.016

    Article  Google Scholar 

  26. S. Tretiakov, A. Kolesnikov, I. Kaplunov, R. Grechishkin, K. Yushkov, and E. Shmeleva, Int. J. Thermophys. 37 (1), Art. No. 6 (2016). https://doi.org/10.1007/s10765-015-2017-x

    Article  ADS  Google Scholar 

  27. A. S. Guk, Yu. V. Gulyaev, V. L. Evstigneev, M. A. Kazaryan, Yu. M. Mokrushin, M. A. Talalaev, and O. V. Shakin, Temperature Effect in Acoustic and Optical Deflectors Made of Paratellurite (Russian Acad. Sci., Moscow, 2017) [in Russian].

    Google Scholar 

  28. P. A. Nikitin, V. V. Gerasimov, and I. S. Khasanov, Materials 14 (19), 5519 (2021). https://doi.org/10.3390/ma14195519

    Article  ADS  Google Scholar 

  29. S. N. Antonov and Yu. G. Rezvov, Instrum. Exp. Tech. 64 (5), 729 (2021). https://doi.org/10.1134/S0020441221040011

    Article  Google Scholar 

  30. S. N. Antonov, Yu. G. Rezvov, V. A. Podol’skii, and O. D. Sivkova, Pis’ma Zh. Tekhn. Fiz. 48 (1), 43 (2022). https://doi.org/10.21883/PJTF.2022.01.51879.18860

    Article  Google Scholar 

  31. A. W. Warner, D. L. White, and W. A. Bonner, J. Appl. Phys. 43 (11), 4489 (1972). https://doi.org/10.1063/1.1660950

    Article  ADS  Google Scholar 

  32. S. N. Antonov, Acoust. Phys. 63 (4), 410 (2017). https://doi.org/10.1134/S1063771017030010

    Article  ADS  Google Scholar 

  33. S. N. Antonov, Instrum. Exp. Tech. 62 (6), 823 (2019). https://doi.org/10.1134/S0020441219060010

    Article  Google Scholar 

  34. S. N. Antonov and A. B. Taeshnikov, Sov. Phys. Acoust. 37 (5), 437 (1991).

    Google Scholar 

  35. S. N. Antonov, Acoust. Phys. 65 (5), 487 (2019). https://doi.org/10.1134/S1063771019050038

    Article  ADS  Google Scholar 

  36. N. Uchida and Y. Ohmachi, J. Appl. Phys. 40 (12), 4692 (1969). https://doi.org/10.1063/1.1657275

    Article  ADS  Google Scholar 

  37. N. Uchida, Phys. Rev. B 4 (10), 3736 (1971). https://doi.org/10.1103/PhysRevB.4.3736

    Article  ADS  Google Scholar 

  38. Y. Ohmachi and N. Uchida, J. Appl. Phys. 41 (6), 2307 (1970). https://doi.org/10.1063/1.1659223

    Article  ADS  Google Scholar 

  39. Handbook of Optical Constants of Solids, Chapter 3: Thermo-Optic Coefficients, Ed. by E. D. Palik (Acad. Press, 1997), p. 115. https://doi.org/10.1016/B978-012544415-6.50150-3

  40. P. S. Peercy, I. J. Fritz, and G. A. Samara, J. Phys. Chem. Solids 36 (10), 1105 (1975). https://doi.org/10.1016/0022-3697(75)90053-0

    Article  ADS  Google Scholar 

  41. I. V. Stefanskii, S. E. Mikhalevich, Y. V. Burak, and V. M. Sapovskii, J. Appl. Spectrosc. 51 (2), 790 (1989). https://doi.org/10.1007/BF00659956

    Article  ADS  Google Scholar 

  42. E. I. Kostyleva and S. N. Mantsevich, in Proc. 24th Int. Sci. Conf. Wave Electronics and Information Communication Systems (St. Petersburg, 2021), Part 1, p. 5 [in Russian]. https://doi.org/10.31799/978-5-8088-1582-7-2021-1

Download references

Funding

The study was supported by a state rask, topic no. 0030-2019-0014. The authors thank the Andrey Melnichenko Foundation for aid in this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Antonov or Yu. G. Rezvov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, S.N., Rezvov, Y.G. Internal Thermal Effects in Axial Paratellurite-Based Acoustooptic Deflector. Acoust. Phys. 68, 435–441 (2022). https://doi.org/10.1134/S1063771022050050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022050050

Keywords:

Navigation