Skip to main content
Log in

Concentration of Eigenfrequencies of Elastic Bodies with Blunted Cuspidal Sharpening

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The phenomenon of black holes for elastic waves has been investigated for Kirchhoff plates and spatial isotropic deformed bodies with a cuspidal sharpening. Since cusps in real engineering structures are always blunted and, therefore, there is no continuous spectrum triggering wave processes, the main focus of the paper implies studying the behavior of eigenfrequencies of a sharpening with a tiny blunted tip, a decrease in the size of which (h > 0) is interpreted as an improvement in the peak-fabrication quality. Several groups of eigenfrequencies with different behavior at \(h \to + 0\) (namely, hardly movable, gliding, and wandering) are described. The found concentration of eigenfrequencies in a wide spectral range indicates the following novel mechanism of kinetic-energy absorption by a blunted sharpening: trapping of elastic waves at “almost all” frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Cross sections in Figs. 4а–4c satisfy this condition, while cross sections in Figs. 4d and 4e do not.

  2. Cross symbol indicates a cross product. At \(N = 2\) and right angle \(\theta \), equalities (43) and (44) are valid for vector \({{(0,1,0)}^{{\rm T}}}\), which corresponds to translational displacement along the ordinate axis.

REFERENCES

  1. M. A. Mironov, Sov. Phys. Acoust. 34 (3), 318 (1988).

    Google Scholar 

  2. V. V. Krylov, Acta Acust. Acust. 90 (5), 830 (2004).

    Google Scholar 

  3. V. V. Krylov and F. J. B. S. Tilman, J. Sound Vib. 274, 605 (2004).

  4. V. V. Krylov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 (8), 1296 (2014).

    Article  Google Scholar 

  5. M. A. Mironov, Acoust. Phys. 63 (1), 1 (2017).

    Article  ADS  Google Scholar 

  6. M. A. Mironov, Acoust. Phys. 65 (6), 634 (2019).

    Article  ADS  Google Scholar 

  7. C. Zhao and M. G. Prasad, Acoustics 1 (1), 220 (2019).

    Article  Google Scholar 

  8. A. Pelat, F. Gautier, S. Conlon, and F. Semperlotti, J. Sound Vib. 476, 115316 (2020).

  9. S. A. Nazarov, Sib. Math. J. 49 (5), 874 (2008).

    Article  MathSciNet  Google Scholar 

  10. F. L. Bakharev and S. A. Nazarov, Sib. Math. J. 50 (4), 587 (2009).

    Article  MathSciNet  Google Scholar 

  11. V. Kozlov and S. A. Nazarov, Adv. Differ. Equations 21 (9/10), 9 (2016).

    Google Scholar 

  12. S. A. Nazarov, Dokl. Phys. 62 (11), 512 (2017).

    Article  ADS  Google Scholar 

  13. S. A. Nazarov, Dokl. Ross. Akad. Nauk, Fiz. Tekh. Nauki 498, 57 (2021).

    Google Scholar 

  14. S. A. Nazarov, Mechanics of Solids. 54 (2), 694 (2019).

  15. S. G. Mikhlin, Variational Methods in Mathematical Physics (Nauka, Moscow, 1970) [in Russian].

    MATH  Google Scholar 

  16. M. I. Vishik and L. A. Lyusternik, Usp. Mat. Nauk 12 (5), 3 (1957).

    Google Scholar 

  17. S. A. Nazarov, Asymptotic Theory for Thin Plates and Bars. Dimensionality Reduction and Integral Estimations (Nauchnaya Kniga, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  18. G. Polya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics (Princeton Univ. Press, 1951; Fizmatgiz, Moscow, 1962).

  19. V. A. Kozlov and S. A. Nazarov, J. Elasticity 132, 103 (2018).

    Article  MathSciNet  Google Scholar 

  20. S. A. Nazarov and J. Taskinen, Algebra Anal. 33, 136 (2021).

    Google Scholar 

  21. N. I. Kuznetsov, V. G. Maz’ya, and B. R. Vainberg, Linear Water Waves: A Mathematical Approach (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  22. S. A. Nazarov and J. Taskinen, Math. Modell. Num. Anal. 45, 947 (2011).

    Article  Google Scholar 

  23. S. A. Nazarov and J. H. Taskinen, Vestn. SPbGU, Ser. 1, No. 1(1), 56 (2008).

    Google Scholar 

  24. I. V. Kamotski and V. G. Maz’ya, SIAM J. Math. Anal. 44, 4222 (2012).

    Article  MathSciNet  Google Scholar 

  25. I. Kamotski and V. Maz’ya, Russ. J. Math. Phys. 20, 453 (2013).

    Article  MathSciNet  Google Scholar 

  26. S. A. Nazarov and J. Taskinen, J. Differ. Equations 269, 2774 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Concentration of Eigenfrequencies of Elastic Bodies with Blunted Cuspidal Sharpening. Acoust. Phys. 68, 215–226 (2022). https://doi.org/10.1134/S1063771022030101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022030101

Keywords:

Navigation