Skip to main content
Log in

Sonography of the Heart of Weatherfish Misgurnus fossilis at the Prelarval Stage of Development

  • ACOUSTICS OF LIVING SYSTEMS. BIOMEDICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article describes a method for hearts of lower vertebrates in the early stages of their development. To achieve sufficient spatial resolution, the method uses an acoustic microscope with mechanical scanning of a focusing ultrasound transducer, the received signal of which is recorded as a function of spatial coordinates and time. The heart of weatherfish Misgurnus fissilis at the prelarval stage of development was examined with a pulsed acoustic microscope. The center frequency and duration of the envelope of the recorded reflected pulses were 70 MHz and 30 ns, respectively. Processing of the recorded spatiotemporal signal made it possible to visualize movement of tissues of the ventricle, atrium, and valves in the ventricular region of the heart, determine the period of heartbeats, and identify heart rhythm phases. It is shown that the characteristic sizes of the ventricle and atrium are 150–300 µm. The responses of moving blood elements were identified and the speed of their movement in different areas of the heart were measured as a function of time. It was found that the blood flow rate reaches a maximum of 2.5 mm/s in the diastolic period in the ventricular region of the heart. In other regions, peaks in the diastolic and systolic periods range from 1.5 to 0.8 mm/s. In accordance with the principle of high-power Doppler sonography, the change in density of moving blood elements was visualized as a function of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. C. Yalcin, A. Amindari, J. T. Butcher, A. Althani, and M. Yacoub, Dev. Dyn. 246 (11), 868 (2017).

    Article  Google Scholar 

  2. P. Giardoglou and D. Beis, Biomedicines 7 (1), 15 (2019).

    Article  Google Scholar 

  3. C. L. Gregg and J. T. Butcher, Differentiation 84 (1), 149 (2012).

    Article  Google Scholar 

  4. S. Daetwyler, U. Günther, C. D. Modes, K. Harrington, and J. Huisken, Development 146 (6), 1 (2019). https://doi.org/10.1242/dev.173757

    Article  Google Scholar 

  5. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, Science 322 (5904), 1065 (2008).

    Article  ADS  Google Scholar 

  6. S. G. Megason, Methods Mol. Biol. 546, 317 (2009).

    Article  Google Scholar 

  7. H. E. Salman and H. C. Yalcin, Micron 130 (3), 10280 (2020).

    Article  Google Scholar 

  8. Y. Y. Foo, S. Pant, H. S. Tay, N. Imangali, N. Chen, C. Winkler, and C. H. Yap, Biomech. Model Mechanobiol. 19 (1), 221 (2020).

    Article  Google Scholar 

  9. L. Sun, C. L. Lien, X. Xu, and K. Kirk Shung, Ultrasound Med. Biol. 34 (1), 31 (2008). https://doi.org/10.1016/j.ultrasmedbio.2007.07.002

    Article  Google Scholar 

  10. C. C. Huang, T. H. Su, and C. C. Shih, Zebrafish 12 (1), 48 (2015).

    Article  Google Scholar 

  11. L. W. Wang, I. G. Huttner, C. F. Santiago, S. H. Kesteven, Z. Y. Yu, M. P. Feneley, and D. Fatkin, Dis. Model. Mech. 10 (1), 63 (2017).

    Google Scholar 

  12. Y. L. Ho, Y. W. Shau, H. J. Tsai, L. C. Lin, P. J. Huang, and F. J. Hsieh, Ultrasound Med. Biol. 28 (9), 1137 (2002).

    Article  Google Scholar 

  13. F. M. Benslimane, M. Alser, Z. Z. Zakaria, A. Sharma, H. A. Abdelrahman, and H. C. Yalcin, Front. Bioeng. Biotechnol. 7, 96 (2019).

    Article  Google Scholar 

  14. C. C. Chang, P. Y. Chen, H. Huang, and C. C. Huang, IEEE Trans. Biomed. Eng. 66 (6), 1742 (2019).

    Article  ADS  Google Scholar 

  15. Y. Fanga, Y. Suna, C. Luo, J. Gu, Z. Shi, G. Lu, J.‑S. Silvestre, and Z. Chen, Life Sci. 253, 117732 (2020).

    Article  Google Scholar 

  16. L. Lee, C. E. Genge, M. Cua, X. Sheng, K. Rayani, M. F. Beg, M. V. Sarunic, and G. F. Tibbits, PLoS One 11 (1), e0145163 (2016). https://doi.org/10.1371/journal.pone.0145163

    Article  Google Scholar 

  17. A. Evangelisti, K. Schimmel, S. Joshi, K. Shah, S. Fisch, K. M. Alexander, R. Liao, and I. Morgado, J. Vis. Exp. 157, e60976 (2020). https://doi.org/10.3791/60976

    Article  Google Scholar 

  18. https://www.visualsonics.com/product/transducers/ mx-series-transducers. Cited June 10, 2021.

  19. S. A. Titov, V. M. Levin, and Yu. S. Petronyuk, Acoust. Phys. 63 (6), 744 (2017).

    Article  ADS  Google Scholar 

  20. S. A. Titov, A. B. Burlakov, P. V. Zinin, and A. N. Bogachenkov, Bull. Russ. Acad. Sci.: Phys. 85 (1), 103 (2021).

    Article  Google Scholar 

  21. G. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1987; Mir, Moscow, 1990).

  22. N. Smith and A. Webb, Introduction to Medical Imaging Physics, Engineering and Clinical Applications (Cambridge Univ. Press, Cambridge, 2011).

    Google Scholar 

  23. A. B. Burlakov, S. A. Titov, and A. N. Bogachenkov, J. Phys.: Conf. Ser. 1679, 022028 (2020).

    Google Scholar 

  24. A. A. Kostomarova, Objects of Development Biology (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  25. A. P. Makeeva, Fish Embryology (MSU, Moscow, 1992) [in Russian].

    Google Scholar 

  26. https://www.mathworks.com/help/signal/ref/fir1.html. Cited June 10, 2021.

  27. D. I. Makalkin, B. A. Korshak, and A. P. Brysev, Acoust. Phys. 63 (5), 590 (2017).

    Article  ADS  Google Scholar 

  28. V. A. Dubrovskii, K. N. Dvoretskii, and A. E. Balaev, Acoust. Phys. 50 (2), 146 (2004).

    Article  ADS  Google Scholar 

  29. T. L. Szabo, Diagnostic Ultrasonic Imaging: Inside out (Elsevier Acad. Press, Amsterdam, 2004).

    Google Scholar 

  30. C. R. Hill, J. C. Bamber, and G. R. Haar, Physical Principles of Medical Ultrasonics (John Wiley and Sons, Chichester, 2004).

    Book  Google Scholar 

Download references

Funding

The work supported by the Ministry of Education and Science of the Russian Federation under state task no. 0069-2019-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Titov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, S.A., Burlakov, A.B. & Bogachenkov, A.N. Sonography of the Heart of Weatherfish Misgurnus fossilis at the Prelarval Stage of Development. Acoust. Phys. 67, 562–570 (2021). https://doi.org/10.1134/S1063771021050109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021050109

Keywords:

Navigation