Skip to main content
Log in

Numerical Study of S0 Lamb Mode Resonator based on c-BN/AlN for 5G Operating Acoustic Devices

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The present work aims the numerical study of acoustic Lamb wave resonator LWR based on Aluminium Nitride (AlN) deposited on cubic Boron Nitride (c-BN). Finite element analysis is adopted to study the propagation of the fundamental symmetric Lamb mode S0 in AlN/BN. The propagation characteristics, such as phase velocity Vp, temperature coefficient of the frequency, reflectivity and electromechanical coupling factor K2 are studied for different AlN and BN thicknesses. High velocity and K2 > 6% are shown. The data used for temperature coefficient of the frequency are extracted from Density Functional Theory calculations from which a positive temperature coefficient of the frequency is obtained. The electrical admittance and the propagation losses are numerically investigated where a large band and a quality factor Q as high as 14 000 for S0 Lamb wave resonator with Copper Cu fingers are obtained. The obtained results show the novel properties of c-BN that contributes in enhancing the performances of Lamb wave resonators and the possibility to use c-BN as potential material in the development of large band and low loss S0 Lamb wave resonator operating in the 3.5 GHz band for 5G telecommunications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Q. Xiao, M. Dai, J. Chen, Y. P. Fan, P. Cai, and X. J. Ji, Acoust. Phys. 65 (6), 652 (2019).

    Article  ADS  Google Scholar 

  2. L. Mai, V.-S. Pham, and G. Yoon, Appl. Phys. 95 (3), 667 (2009).

    Article  Google Scholar 

  3. K. Wang, U. Koelle, J. D. Larson, R. Thalhammer, and S. Martin, in Proc. 2015 IEEE Int. Ultrasonics Symp. (IUS) (Taipei, Oct. 2015), p. 1.

  4. C. C. Ruppel, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 64 (9), 1390 (2009).

    Article  Google Scholar 

  5. Y. Liu, Y. Cai, Y. Zhang, A. Tovstopyat, S. Liu, and C. Sun, Micromachines 11 (7), 630 (2020).

    Article  Google Scholar 

  6. B. P. Sorokin, A. S. Novoselov, G. M. Kvashnina, N. V. Lupareva, N. O. Asafiev, A. B. Shipilov, and V. V. Aksenenkov, Acoust. Phys. 65, 263 (2019).

    Article  ADS  Google Scholar 

  7. V. Pashchenko, R. Matloub, F. Parsapourkolour, P. Muralt, S. Ballandras, and K. Haffner, in Proc. 2016 IEEE Int. Ultrasonics Symp. (IUS) (Tours, Sept. 2016), p. 1.

  8. J. B. Shealy, R. Vetury, S. R. Gibb, M. D. Hodge, P. Patel, M. A. McLain, and R. Holden, in Proc. 2017 IEEE Mtt-S Int. Microwave Symp. (IMS) (Honolulu, Jun. 2017), p. 1476.

  9. V. Yantchev and I. Katardjiev, J. Micromech. Microeng. 23 (4), 043001 (2013).

    Article  ADS  Google Scholar 

  10. H. Zhu, C. Tu, and J. E. Y. Lee, in Proc. 29th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS) (Shanghai, 2016), p. 970.

  11. T. Mirea and V. Yantchev, Sens. Actuators, B 208, 212 (2015).

    Article  Google Scholar 

  12. R. Wang, S. A. Bhave, and K. Bhattacharjee, J. Microelecromech. Syst. 24 (2), 300 (2015).

    Google Scholar 

  13. A. Gao, J. Zou, and S. Gong, in Proc. 2017 IEEE Int. Ultrason. Symp. (IUS) (Washington, Sept. 2017), p. 1.

  14. J. Zou, C. M. Lin, Y. Y. Chen, and A. P. Pisano, in Proc. 18th Int. Conf. on Solid-State Sensors, Actuators and Microsystems Transducers-2015 (Anchorage, Jun. 2015), p. 2025.

  15. M. Kadota and T. Ogami, Jpn. J. Appl. Phys. 50 (7S), 07HD11 (2011).

    Article  Google Scholar 

  16. C. M. Lin, V. Yantchev, J. Zou, Y. Y. Chen, and A. P. Pisano, J. Microelectromech. Syst. 23 (1), 78 (2013).

    Article  Google Scholar 

  17. V. Yantchev and I. Katardjiev, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 54 (1), 87 (2006).

    Article  Google Scholar 

  18. L. Fan, S. Y. Zhang, H. Ge, and H. Zhang, J. Appl. Phys. 114 (2), 024504 (2013).

    Article  ADS  Google Scholar 

  19. A. Talbi, A. Soltani, V. Mortet, J. C. Gerbedoen, J. C. De Jaeger, and P. Pernod, Diamond Relat. Mater. 22, 66 (2012).

    Article  ADS  Google Scholar 

  20. G. Wingqvist, L. Arapan, V. Yantchev, and I. Katardjiev, J. Micromech. Microeng. 19 (3), 035018 (2009).

    Article  ADS  Google Scholar 

  21. Y. Liu, Y. Cai, Y. Zhang, A. Tovstopyat, S. Liu, and C. Sun, Micromachines. 11 (7) 630 (2020).

    Article  Google Scholar 

  22. J. Zou, C. M. Lin, Y. Y. Chen, and A. P. Pisano, J. Appl. Phys. 115 (9), 094510 (2014).

    Article  ADS  Google Scholar 

  23. I. Bello, C. Y. Chan, W. J. Zhang, Y. M. Chong, K. M. Leung, S. T. Lee, and Y. Lifshitz, Diamond Relat. Mater. 14 (3–7), 1154 (2005).

    Article  ADS  Google Scholar 

  24. A. M. Abrao, D. K. Aspinwall, and M. L. H. Wise, in Proc. 30th Int. MATADOR Conf. (Palgrave, London, 1993), p. 169.

  25. J. Deng, B. Wang, L. Tan, H. Yan, and G. Chen, Thin Solid Films 368 (2), 312 (2000).

    Article  ADS  Google Scholar 

  26. S. Tian, F. Xu, P. Ye, J. Wu, Y. Zou, and D. Zuo, Thin Solid Films 653, 13 (2018).

    Article  ADS  Google Scholar 

  27. K. Larsson, Thin Solid Films 515 (2), 401 (2006).

    Article  ADS  Google Scholar 

  28. C. Ronning, H. Feldermann, and H. Hofsäss, Diamond Relat. Mater. 9 (9–10), 1767 (2000).

    Article  ADS  Google Scholar 

  29. S. Tian, F. Xu, P. Ye, J. Wu, L. Tu, D. Zuo, and Y. Lu, Integr. Ferroelectr. 198 (1), 91 (2019).

    Article  Google Scholar 

  30. W. J. Zhang, I. Bello, Y. Lifshitz, and S. T. Lee, MRS Bull. 28 (3), 184 (2003).

    Article  Google Scholar 

  31. T. Higuchi, M. Noma, M. Yamashita, K. Urabe, S. Hasegawa, and K. Eriguchi, Surf. Coat. Technol. 377, 124854 (2019).

    Article  Google Scholar 

  32. W. J. Zhang, Y. M. Chong, I. Bello, and S. T. Lee, J. Phys. D: Appl. Phys. 40 (20), 6159 (2007).

    Article  ADS  Google Scholar 

  33. W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, in Comprehensive Hard Materials (Elsevier, 2014), p. 607.

    Google Scholar 

  34. X. Zhang and J. Meng, in Ultra-Wide Bandgap Semiconductor Materials (Elsevier, 2019), p. 347.

    Google Scholar 

  35. S. N. Monteiro, A. L. D. Skury, M. G. de Azevedo, and G. S. Bobrovnitchii, J. Mater. Res. Technol. 2 (1), 68 (2013).

    Article  Google Scholar 

  36. M. Keunecke, E. Wiemann, K. Weigel, S. T. Park, and K. Bewilogua, Thin Solid Films 515 (3), 967 (2006).

    Article  ADS  Google Scholar 

  37. S. R. Maity, P. Chatterjee, and S. Chakraborty, Mater. Des. 36, 372 (2012).

    Article  Google Scholar 

  38. C. Caliendo, Sensors 15 (2), 2525 (2015).

    Article  ADS  Google Scholar 

  39. C. Caliendo, Sensors 15 (6), 12841 (2015).

    Article  ADS  Google Scholar 

  40. V. T. Nguyen, P. Kumar, and J. Y. C. Leong, Computation 6 (4), 60 (2018).

    Article  Google Scholar 

  41. F. Laidoudi, F. Boubenider, M. Mebarki, F. Medjili, and F. Bettine, Acoust. Phys. 65 (3), 253 (2019).

    Article  ADS  Google Scholar 

  42. Landolt-Börnstein – Group III Condensed Matter, Ed. by O. Madelung, U. Rössler, and M. Schulz (Springer-Verlag, Berlin, Heidelberg, 2001), Vol. 41A1a.

  43. J. H. Kuypers, C.-M. Lin, G. Vigevani, and A. P. Pisano, in Proc. IEEE Int. Frequency Control Symp. (Honolulu, 2008), p. 240.

  44. V. I. Anisimkin, E. Verona, A. S. Kuznetsova, and V. A. Osipenko, Acoust. Phys. 65, 171 (2019). https://doi.org/10.1134/S1063771019020027

    Article  ADS  Google Scholar 

  45. V. I. Anisimkin and N. V. Voronova, Acoust. Phys. 66 (1), 1 (2020). https://doi.org/10.1134/S1063771020010017

    Article  ADS  Google Scholar 

  46. F. Laidoudi, F. Boubenider, C. Caliendo, and M. Hamidullah, J. Mech. 36 (1), 7 (2020).

    Article  Google Scholar 

  47. C. M. Lin, Y. Y. Chen, and A. P. Pisano, Appl. Phys. Lett. 97 (19), 193506 (2010).

    Article  ADS  Google Scholar 

  48. J. Zou, C. M. Lin, C. S. Lam, and A. P. Pisano, J. Appl. Phys. 121 (15), 154502 (2017).

    Article  ADS  Google Scholar 

  49. C. M. Lin, T. T. Yen, and Y. J. Lai, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 57 (3), 524 (2010).

    Article  Google Scholar 

  50. K. Hashimoto and K. Y. Hashimoto, Surface Acoustic Wave Devices in Telecommunications (Springer, Berlin, 2000), Vol. 116.

    Book  MATH  Google Scholar 

  51. J. M. L. Miller, A. Ansari, D. B. Heinz, Y. Chen, I. B. Flader, D. D. Shin, and T. W. Kenny, Appl. Phys. Rev. 5 (4), 041307 (2018).

    Article  ADS  Google Scholar 

  52. C. Caliendo and F. Laidoudi, Sensors 20 (5), 1380 (2020).

    Article  ADS  Google Scholar 

  53. K. Fares, A. Saad, A. Abdenacer, A. Fahima, and Q. Zou, Sens. Actuators, A 307, 111980 (2020).

    Article  Google Scholar 

  54. M. Richardson, S. K. Sankaranarayanan, and V. R. Bhethanabotla, IEEE Sens. J. 15 (2), 787 (2014).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the General Directorate of Scientific Research and Technological Development DGRSDT of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mebarki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebarki, M., Laidoudi, F. & Boubenider, F. Numerical Study of S0 Lamb Mode Resonator based on c-BN/AlN for 5G Operating Acoustic Devices. Acoust. Phys. 67, 457–464 (2021). https://doi.org/10.1134/S1063771021050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021050043

Keywords:

Navigation