Skip to main content
Log in

The Influence of Porosity on the Statistical Amplitude Distribution of Backscattered Ultrasonic Pulses in Reactive Cast Metal–Matrix Composites

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

In this work, we study the influence of the local porosity in isotropic reactive cast particulate reinforced metal–matrix composites on the statistical amplitude distribution of backscattered broadband pulses of longitudinal ultrasonic waves. A special laser optoacoustic transducer is employed for this purpose, which makes it possible to achieve laser excitation and piezoelectric detection of ultrasound by one-side access to a sample or product. Two series of in-situ reactive cast aluminum–matrix composites were studied: reinforced solely with the Al3Ti intermetallic particles (volumetric contents 0.04–0.115) and with combination of Al3Ti and synthetic diamond nanoparticles (volumetric content 0.002). The last accelerate reactive synthesis of Al3Ti particles and lead to modification of their shape and sizes. For both series of composites, the amplitude distribution of backscattered ultrasonic pulses has been approximated with the Gaussian probability distribution applicable for statistics of large number of independent random variables. The empirical dependence of the half-width of this distribution on the local porosity in composites of two series has been fitted by the same function close to the linear one regardless the size and content of reinforcing particles. This functional relationship can be used for quantitative evaluation of the local porosity of the composite material both at its manufacturing stage and during service of composite parts and products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  2. S. T. Mileiko, Metal and Ceramic Based Composites (Elsevier, Amsterdam, 1997).

    Google Scholar 

  3. T. A. Chernyshova, Yu. A. Kurganova, L. I. Kobeleva, and L. K. Bolotova, Molded Dispersed-Strengthen Aluminum Matrix Composite Materials: Manufacturing, Properties, Application (Ulyanovsk State Technical Univ., Ulyanovsk, 2012) [in Russian].

    Google Scholar 

  4. D. J. Lloyd, Int. Mater. Rev. 39, 1 (1994).

    Article  Google Scholar 

  5. K. U. Kainer, Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering (Wiley-VCH, Weinheim, 2006), p. 1.

    Book  Google Scholar 

  6. T. A. Chernyshova, R. S. Mikheev, I. E. Kalashnikov, I. V. Akimov, and E. I. Kharlamov, Inorg. Mater.: Appl. Res. 2 (3), 282 (2010).

    Article  Google Scholar 

  7. A. V. Konovalov and S. V. Smirnov, Konstr. Kompoz. Mater., No. 1, 30 (2015).

  8. S. C. Tjong and Z. Y. Ma, Mater. Sci. Eng. R 29, 49 (2000).

    Article  Google Scholar 

  9. R. A. Varin, Metall. Mater. Trans. A 33, 193 (2002).

    Article  Google Scholar 

  10. X. Wang, A. Jha, and R. Brydson, Mater. Sci. Eng., A 364, 339 (2004).

    Article  Google Scholar 

  11. T. A. Chernyshova, L. K. Bolotova, I. E. Kalashnikov, L. I. Kobeleva, and P. A. Bykov, Russ. Metall. (Engl. Transl.) 2007 (3), 236 (2007).

  12. V. V. Murasheva, N. P. Burkovskaya, and N. V. Sevost’yanov, Konstr. Kompoz. Mater., No. 2, 27 (2015).

  13. J. Campbell, in Complete Casting Handbook. Metal Casting Processes, Metallurgy, Techniques and Design (Butterworth-Heinemann, Elsevier, Amsterdam, 2015), p. 341.

    Google Scholar 

  14. P. K. Rohatgi, S. Alaraj, R. B. Thakkar, and A. Daoud, Composites, Part A 38 (8), 1829 (2007).

    Article  Google Scholar 

  15. A. Vary, in Nondestructive Testing Handbook. Ultrasonic Testing, Ed. by P. O. Moore (ASTM, Columbus, 2007), p. 365.

    Google Scholar 

  16. E. V. Glushkov, N. V. Glushkova, and S. I. Fomenko, Acoust. Phys. 57 (2), 230 (2011).

    Article  ADS  Google Scholar 

  17. I. S. Kol’tsova, A. S. Khomutova, and M. A. Deinega, Acoust. Phys. 62 (2), 187 (2016).

    Article  ADS  Google Scholar 

  18. D. W. Fitting and L. Adler, Ultrasonic Spectral Analysis for Nondestructive Evaluation (Plenum Press, New York, 1981).

    Book  Google Scholar 

  19. V. E. Gusev and A. A. Karabutov, Ultrasonic Spectral Analysis for Nondestructive Evaluation (Plenum Press, New York, 1981).

    Google Scholar 

  20. A. A. Karabutov and N. B. Podymova, Mech. Compos. Mater. 31 (3), 301 (1995).

    Article  ADS  Google Scholar 

  21. A. Yu. Devichenskii, A. M. Lomonosov, S. E. Zharinov, V. G. Mikhalevich, M. L. Lyamshev, T. O. Ivanova, and N. S. Merkulova, Acoust. Phys. 55 (1), 61 (2009).

    Article  ADS  Google Scholar 

  22. I. E. Kalashnikov, N. B. Podymova, A. A. Karabutov, L. K. Bolotova, L. I. Kobeleva, and A. G. Kolmakov, Inorg. Mater. 52 (4), 429 (2016).

    Article  Google Scholar 

  23. A. A. Karabutov and N. B. Podymova, Acoust. Phys. 63 (3), 288 (2017).

    Article  ADS  Google Scholar 

  24. A. N. Zharinov, A. A. Karabutov, E. A. Mironova, S. N. Pichkov, E. V. Savateeva, V. A. Simonova, and D. N. Shishulin, Acoust. Phys. 65 (3), 307 (2019).

    Article  ADS  Google Scholar 

  25. R. I. Vorobyev, I. V. Sergeichev, A. A. Karabutov, E. A. Mironova, E. V. Savateeva, and I. Sh. Akhatov, Acoust. Phys. 66 (2), 132 (2020).

    Article  ADS  Google Scholar 

  26. N. B. Podymova, I. E. Kalashnikov, L. K. Bolotova, and L. I. Kobeleva, Ultrasonics 99, 105959 (2019).

    Article  Google Scholar 

  27. A. A. Karabutov and N. B. Podymova, J. Nondestr. Eval. 32 (3), 315 (2013).

    Google Scholar 

  28. Yu. G. Sokolovskaya, N. B. Podymova, and A. A. Karabutov, Acoust. Phys. 66 (1), 81 (2020).

    Article  ADS  Google Scholar 

  29. L. Adler, J. H. Rose, and C. Mobley, J. Appl. Phys. 59, 336 (1986).

    Article  ADS  Google Scholar 

  30. C. F. Ying and R. Truell, J. Appl. Phys. 27, 1086 (1956).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Podymova.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podymova, N.B., Karabutov, A.A. The Influence of Porosity on the Statistical Amplitude Distribution of Backscattered Ultrasonic Pulses in Reactive Cast Metal–Matrix Composites. Acoust. Phys. 67, 47–55 (2021). https://doi.org/10.1134/S1063771021010073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021010073

Keywords:

Navigation