Skip to main content
Log in

Laboratory Experimental Facility for Studying Metamaterial Sound-absorbing Duct Linings with Grazing Sound Propagation and How the Type of Source Influences their Efficiency

  • PHYSICAL FOUNDATIONS OF TECHNICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article describes an experimental facility for studying and testing sound-absorbing linings made of acoustic metamaterials designed to reduce the noise generated by a source in a finite waveguide. The main focus is on the features of acoustic field formation in a waveguide and its emission from the open ends. The article centers on the results of a study of how different facility parameters influence the efficiency of linings. The large influence of the parameter “type of source” on the lining efficiency has been revealed and investigated for the first time. It is rigorously defined, and the physical mechanism of its influence on the efficiency is described. Conditions are formulated under which the efficiency of a sound-absorbing lining measured on the experimental facility will be equal to or close to its efficiency measured on a real object. It is shown that one of the most important conditions is the coincidence of types of acoustic sources used in the facility with a real one. The results obtained are useful in designing efficient sound-absorbing linings, as well as in creating experimental facilities for their development and testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Currently, there are only two international standards according to which the absorption capacity of SA materials is characterized by the absorption coefficient (the ratio of the absorbed and incident power), measured in impedance tubes with normally incident sound [13] and in reverberation chambers in diffuse field conditions [14], when the sound is incident at all angles simultaneously.

REFERENCES

  1. N. N. Andreev, Izv. Akad. Nauk SSSR. Ser. Fiz., No. 5, 625 (1936).

  2. P. M. Morse, J. Acoust. Soc. Am. 11 (2), 205 (1939).

    Article  ADS  Google Scholar 

  3. L. L. Beranek, J. Acoust. Soc. Am. 12 (2), 228 (1940).

    Article  ADS  Google Scholar 

  4. M. A. Isakovich, General Acoustics (Nauka. Gl. redaktsiya fiz.-mat. lit., Nauka, 1973) [in Russian].

  5. P. M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton Univ. Press, Princeton, NJ, 1986).

    Google Scholar 

  6. M. L. Munjal, Acoustics of Ducts and Mufflers (Wiley, New York, 1977).

    Google Scholar 

  7. L. Cremer, Akust. Beih. 3 (2), 249 (1953).

    Google Scholar 

  8. B. G. Tester, J. Sound Vibr. 27 (4), 477 (1973);

  9. B. G. Tester, J. Sound Vibr. 28 (2), 151 (1973).

  10. A. D. Lapin, Akust. Zh. 21 (3), 337 (1975).

    ADS  Google Scholar 

  11. D. V. Bazhenov, L. A. Bazhenova, and A. V. Rimskii-Korsakov, Akust. Zh. 41 (1), 22 (1995).

    Google Scholar 

  12. E. L. Shenderov, Acoust. Phys. 45 (5), 589 (1999).

    ADS  Google Scholar 

  13. Formulas of Acoustics, Ed. by F. P. Mechel (Springer-Verlag, Berlin, 2008).

    Google Scholar 

  14. ISO 10534-2: Acoustics—determination of sound absorption coefficient and impedance in impedance tubes (1998).

  15. ISO 354: Acoustics—mesurement of sound absorption in a reverberation room (1985).

  16. R. A. Mangiarotty, J. Acoust. Soc. Am. 48 (3), Part 3, 783 (1970).

  17. E. Rademaker, S. Idzenga, H. Huisman, R. Nijboer, and S. Sarin, in Proc. ICSV10 (Stockholm, 2003).

  18. R. Sugimoto, R. J. Astley, and A. J. Kempton, in Proc. ICSV 11 (St. Petersburg, 2004).

  19. Y. Khaletskiy, V. Povarkov, R. Shipov, and G. Shul, in Proc. ICSV 14 (Cairns, 2007).

  20. T. H. Melling and P. E. Doak, J. Sound Vib. 14 (1), 23 (1971).

  21. A. N. Antoshin, A. G. Zakharov, N. A. Gorodkova, and V. A. Chursin, Vestn. PNIPU, Mekhan., No. 1, 5 (2015).

  22. N. N. Ostrikov, in Proc. 3rd All-Russian Conf. for Young Scientists and Specialists “Habitat Acoustics” (N. E. Bauman State Technical Univ., Moscow, 2018) [in Russian].

  23. Yu. I. Bobrovnitskii and T. M. Tomilina, Acoust. Phys. 64 (5), 519 (2018).

    Article  ADS  Google Scholar 

  24. X. Wang and G.-M. Mak, J. Acoust. Soc. Am. 131 (2), 1172 (2012).

    Article  ADS  Google Scholar 

  25. Y. Auregan, M. Farooqui, and J.-P. Groby, J. Acoust. Soc. Am. 139 (5), EL149 (2016).

    Article  Google Scholar 

  26. L. Cremer, J. Sound Vib. 16 (1), 1 (1971).

  27. A. D. Jones, Noise Control Eng. 23, 12 (1984).

    Google Scholar 

  28. H. Boden and M. Abom, Acta Acust. 3, 549 (1995).

    Google Scholar 

  29. Y. I. Bobrovnitskii and G. Pavic, J. Sound Vibr. 261, 527 (2003).

  30. D. F. Ross and M. J. Crocker, J. Acoust. Soc. Am. 74 (1), 18 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Bobrovnitskii.

Additional information

Translated by A. Carpenter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrovnitskii, Y.I., Tomilina, T.M., Bakhtin, B.N. et al. Laboratory Experimental Facility for Studying Metamaterial Sound-absorbing Duct Linings with Grazing Sound Propagation and How the Type of Source Influences their Efficiency. Acoust. Phys. 66, 324–332 (2020). https://doi.org/10.1134/S106377102003001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377102003001X

Keywords:

Navigation