Skip to main content
Log in

Numerical Investigation of Quasi-Lamb Modes in C‑Tilted ZnO/SiC Composite Membrane for High Performance Pressure Micro-Sensor

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Using the finite element method, we have studied the Lamb modes characteristics propagation in c‑tilted ZnO/SiC thin film composite membrane. Phase velocity dispersion curves, electromechanical coupling factors and the mass loading effect on the fundamental quasi Lamb modes are theoretically investigated for different rotating angle (0°, θ°, 90°), θ being the angle of rotation, and for different hZnO/λ values. To develop high performance pressure micro-sensor based on thin film piezoelectric ZnO on amorphous SiC (range 0.1 to 100 Pa) the anti-symmetric fundamental qA0 mode phase shift is studied for pressure sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum Press, New York, NY, 1967).

    Book  Google Scholar 

  2. M. J. R. Naserabadi and S. Sodagar, Acoust. Phys. 63, 402 (2017).

    Article  ADS  Google Scholar 

  3. C. M. Lin, Y. Y. Chen, V. V. Felmetsger, D. G. Senesky, and A. P. Pisano, Adv. Mater. 24, 2722 (2012).

    Article  Google Scholar 

  4. I. V. Anisimkin, Acoust. Phys. 50 (2), 115 (2004).

    Article  ADS  Google Scholar 

  5. E. Verona, V. I. Anisimkin, V. A. Osipenko, and N. V. Voronova, Ultrasonics 76, 227(2017).

    Article  Google Scholar 

  6. V. I. Anisimkin and N. V. Voronova, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 58, 578 (2011).

    Article  Google Scholar 

  7. C. Caliendo, M. Hamidullah, and F. Laidoudi, Sensors 17, 1209 (2017).

    Article  Google Scholar 

  8. T. Mirea and V. Yantchev, Sens. Actuators, A 208, 212 (2015).

    Article  Google Scholar 

  9. C. Caliendo, Sens. Actuators, B 179, 287 (2013).

    Article  Google Scholar 

  10. I. E. Kuznetsova, B. D. Zaitsev, S. G. Joshi, and A. A. Teplykh, Acoust. Phys. 53, 557 (2007).

    Article  ADS  Google Scholar 

  11. Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, Sens. Actuators, B 143, 606 (2010).

    Article  Google Scholar 

  12. L. Qin, Q. Chen, H. Cheng, Q. Chen, J. F. Li, and Q. M. Wang, J. Appl. Phys. 110, 094511 (2011).

    Article  ADS  Google Scholar 

  13. C. Caliendo, S. Sait, and F. Boubenider, Micromachines 7, 15 (2016).

    Article  Google Scholar 

  14. L. Qin, Q. Chen, H. Cheng, and Q. M. Wang, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 57 (8) (2010).

  15. O. C. Zienkiewicz and R.L. Taylor, The Finite Element Method for Solid and Structural Mechanics, 6th ed. (Elsevier, 2005).

    MATH  Google Scholar 

  16. D. Alleyne and P. Cawley, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 39, 381 (1992).

    Article  ADS  Google Scholar 

  17. M. Suenaga, E. L. Adler, G. W. Farnell, J. M. Galligan, G. C. Joyce, F. L. Nagy, E. K. Sittig, and W. J. Spencer, Physical Acoustics: Principles and Methods (Academic Press, New York, 1972).

    Google Scholar 

  18. B. A. Auld, Acoustic Fields and Waves in Solids, (John Wiley and Sons, New York, 1973).

    Google Scholar 

  19. P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, J. Appl. Phys. 101, 103515 (2007).

    Article  ADS  Google Scholar 

  20. R. Zemčík and P. Sadílek, Appl. Comput. Mech. 1, 381 (2007).

    Google Scholar 

  21. Ş. Sorohan, N. Constantin, M. Găvan, and V. Anghel, Ultrasonics 51, 503 (2011).

    Article  Google Scholar 

  22. L. Fan, S. Y. Zhang, H. Ge, and H. Zhang, J. Appl. Phys. 114, 024504 (2013).

    Article  ADS  Google Scholar 

  23. E. Dieulesaint and D. Royer, Elastic Waves in Solids: Free and Guided Propagation (Springer, New York, 2000).

    MATH  Google Scholar 

  24. S. H. Wang, C. Y. Shen, H. M. Huang, and Y. C. Shih, Sens. Actuators, A 216, 237 (2014).

    Article  Google Scholar 

  25. C. Caliendo, Sensors 15, 12841 (2015).

    Article  Google Scholar 

  26. C. M. Lin, V. Yantchev, J. Zou, Y. Y. Chen, and A. P. Pisano, J. Microelectromech. Syst. 23, 78 (2014).

    Article  Google Scholar 

  27. G. N. M. Ferreira, A. C. Da-Silva, and B. Tomé, Trends Biotechnol. 27, 689 (2009).

    Article  Google Scholar 

  28. G. Mchale, M. I. Newton, and F. Martin, J. Appl. Phys. 91, 9701 (2002).

    Article  ADS  Google Scholar 

  29. A. Kang, J. Ji, X. Lin, W. Wang, H. Li, C. Zhang, and T. Han, Sens. Actuators, A 187, 141 (2012).

    Article  Google Scholar 

  30. Q. Jiang, X. M. Yang, H. G. Zhou, and J. S. Yang, Sens. Actuators, A 118, 1 (2005).

    Article  Google Scholar 

  31. H. L. Li, Y. B. Ke, Y. H. Tian, W. Luo, S. T. He, and B. Hu, in Proc. IEEE Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) (Chengdu, 2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Laidoudi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laidoudi, F., Boubenider, F., Mebarki, M. et al. Numerical Investigation of Quasi-Lamb Modes in C‑Tilted ZnO/SiC Composite Membrane for High Performance Pressure Micro-Sensor. Acoust. Phys. 65, 253–262 (2019). https://doi.org/10.1134/S1063771019030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019030059

Keywords:

Navigation