Skip to main content
Log in

Manifestation of peripherial coding in the effect of increasing loudness and enhanced discrimination of the intensity of tone bursts before and after tone burst noise

  • Acoustics of Living Systems
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

To find the possible reasons for the midlevel elevation of the Weber fraction in intensity discrimination of a tone burst, a comparison was performed for the complementary distributions of spike activity of an ensemble of space nerves, such as the distribution of time instants when spikes occur, the distribution of interspike intervals, and the autocorrelation function. The distribution properties were detected in a poststimulus histogram, an interspike interval histogram, and an autocorrelation histogram—all obtained from the reaction of an ensemble of model space nerves in response to an auditory noise burst–useful tone burst complex. Two configurations were used: in the first, the peak amplitude of the tone burst was varied and the noise amplitude was fixed; in the other, the tone burst amplitude was fixed and the noise amplitude was varied. Noise could precede or follow the tone burst. The noise and tone burst durations, as well as the interval between them, was 4 kHz and corresponded to the characteristic frequencies of the model space nerves. The profiles of all the mentioned histograms had two maxima. The values and the positions of the maxima in the poststimulus histogram corresponded to the amplitudes and mutual time position of the noise and the tone burst. The maximum that occurred in response to the tone burst action could be a basis for the formation of the loudness of the latter (explicit loudness). However, the positions of the maxima in the other two histograms did not depend on the positions of tone bursts and noise in the combinations. The first maximum fell in short intervals and united intervals corresponding to the noise and tone burst durations. The second maximum fell in intervals corresponding to a tone burst delay with respect to noise, and its value was proportional to the noise amplitude or tone burst amplitude that was smaller in the complex. An increase in tone burst or noise amplitudes was caused by nonlinear variations in the two maxima and the ratio between them. The size of the first maximum in the of interspike interval distribution could be the basis for the formation of the loudness of the masked tone burst (implicit loudness), and the size of the second maximum, for the formation of intensity in the periodicity pitch of the complex. The auditory effect of the midlevel enhancement of tone burst loudness could be the result of variations in the implicit tone burst loudness caused by variations in tone-burst or noise intensity. The reason for the enhancement of the Weber fraction could be competitive interaction between such subjective qualities as explicit and implicit tone-burst loudness and the intensity of the periodicity pitch of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Schmidt, Fundamentals of Sensory Physiology (Springer-Verlag, New York, 1981).

    Book  Google Scholar 

  2. F.-G. Zeng, C. W. Turner, and E. M. Relkin, Hearing Res. 55, 223–230 (1991).

    Article  Google Scholar 

  3. C. J. Plack and N. F. Viemeister, J. Acoust. Soc. Am. 92 (4), 1902–1910 (1992).

    Article  ADS  Google Scholar 

  4. C. J. Plack and N.F. Viemeister, J. Acoust. Soc. Am. 92 (6), 3097–3101 (1992).

    Article  ADS  Google Scholar 

  5. R. P. Carlyon and H. A. Beveridge, J. Acoust. Soc. Am. 93 (5), 2886–2895 (1993).

    Article  ADS  Google Scholar 

  6. F.-G. Zeng, J. Acoust. Soc. Am. 96 (4), 2127–2132 (1994).

    Article  ADS  Google Scholar 

  7. C. J. Plack, R. P. Carlyon, and N. F. Viemeister, J. Acoust. Soc. Am. 97 (2), 1141–1149 (1995).

    Article  ADS  Google Scholar 

  8. M. C. Liberman, J. Acoust. Soc. Am. 63 (2), 442–455 (1978).

    Article  ADS  Google Scholar 

  9. E. M. Relkin and J. R. Doucet, Hearing Res. 55, 215–222 (1991).

    Article  Google Scholar 

  10. C. J. Plack, J. Acoust. Soc. Am. 100 (2), 1024–1030 (1996).

    Article  ADS  Google Scholar 

  11. F.-G. Zeng and R. V. Shannon, Hearing Res. 82, 216–224 (1995).

    Article  Google Scholar 

  12. R. S. Schlauch, B. R. Clement, D. T. Ries, ans J. J. di Giovanni, J. Acoust. Soc. Am. 105 (2), 822–828 (1999).

    Article  ADS  Google Scholar 

  13. R. J. Irwin and J. J. Zwisklocki, Percept. Psychophys. 10 (3), 189–192 (1971).

    Article  Google Scholar 

  14. R. Galambos, J. Bauer, T. Picton, K. Squires, and N. Squires, J. Acoust. Soc. Am. 52 (4B), 1127–1130 (1972).

    Article  ADS  Google Scholar 

  15. J. J. Zwislocki and W. G. Sokolich, Percept. Psychophys. 16 (1), 87–90 (1974).

    Article  Google Scholar 

  16. Ya. A. Al’tman, N. G. Bibikov, I. A. Vartanyan, M. G. Dubrovskii, S. M. Ishchenko, A. I. Konstantinov, A. I. Makarov, E. V. Movchan, E. A. Radionova, V. N. Telepnev, S. A. Khachunts, G. N. Shmigidina, and V. S. Shuplyakov, Hearing System, Ya. A. Al’tman, Ed., Leningrad: Nauka, 1990.

  17. G. G. Somjen, Sensory coding in the mammalian nervous system (Plenum, New York, 1975).

    Book  Google Scholar 

  18. S. A. Gelfand, Hearing. An Introduction to Psychological and Physiological Acoustics (Marcel Dekker, New York, 1981).

    Google Scholar 

  19. B. C. Moore, An Introduction to the Psychology of Hearing (Academic, London, 1997), 4th ed.

    Google Scholar 

  20. N. Y. Kiang, T. Watanabe, E. C. Thomas, and L. F. Clark, Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve (MIT, Cambridge, 1965).

    Google Scholar 

  21. P. A. Cariani, Neural Plasticity 6 (4), 147–171 (1999).

    Article  Google Scholar 

  22. J. F. Schouten, Proc. Kon. Ned. Akad. 43 356–365 (1940).

    Google Scholar 

  23. J. F. Schouten, R. J. Ritsma, and B. Cardozo, J. Acoust. Soc. Am. 34 (9B), 1418–1424 (1962).

    Article  ADS  Google Scholar 

  24. D. Pressnitzer, A. de Cheveigne, I. M. Winter, Acoust. Res. Lett. Online 5, 1–6 (2004).

    Article  Google Scholar 

  25. C. Kaernbach and L. Demany, J. Acoust. Soc. Am. 104 (4), 2298–2306 (1998).

    Article  ADS  Google Scholar 

  26. R. Plomp, Annu. Rev. Psychol. 26, 207–232 (1975).

    Article  Google Scholar 

  27. J. J. Eggermont, Auditory Temporal Processing and Its Disorders (OUP, Oxford, 2015).

    Book  Google Scholar 

  28. D. Oberfeld, J. Acoust. Soc. Am. 123 (3), 1571–1581 (2008).

    Article  ADS  Google Scholar 

  29. R. S. Schlauch, N. Lanthier, and J. Neve, J. Acoust. Soc. Am. 102 (1), 461–467 (1997).

    Article  ADS  Google Scholar 

  30. N. A. Dubrovskii and L. K. Rimskaya-Korsakova, Acoust. Phys. 43 (4), 421–428 (1997).

    ADS  Google Scholar 

  31. N. A. Dubrovskii and L. K. Rimskaya-Korsakova, Acoust. Phys. 44 (2), 173–179 (1998).

  32. L. K. Rimskaya-Korsakova, V. N. Telepnev, and N. A. Dubrovksii, Neurosci. Behav. Physiol. 35 (1), 71–81 (2005)

    Article  Google Scholar 

  33. L. K. Rimskaya-Korsakova and N. G. Bibikov, in Proc. 18th Sess. Russ. Acoust. Soc. (GEOS, Moscow, 2006), Vol. 3, pp. 129–132.

    Google Scholar 

  34. P. X. Joris and T. C. T. Yin, J. Acoust. Soc. Am. 91 (1), 215–232 (1992).

    Article  ADS  Google Scholar 

  35. M. B. Sachs and P. J. Abbas, J. Acoust. Soc. Am. 56 (6), 1835–1847 (1974).

    Article  ADS  Google Scholar 

  36. I. M. Winter, D. Robertson, and G. K. Yates, Hearing Res. 45, 191–202 (1990).

    Article  Google Scholar 

  37. G. K. Yates, G. A. Manley, and C. Koppl, J. Acoust. Soc. Am. 107 (4), 2143–2154 (2000).

    Article  ADS  Google Scholar 

  38. R. D. Frisina, Hearing Res. 158, 1–27 (2001).

    Article  Google Scholar 

  39. P. A. Cariani and B. Delgutte, J. Neurophysiol. 76 (3), 1698–1716 (1996).

    Google Scholar 

  40. P. A. Cariani and B. Delgutte, J. Neurophysiol. 76 (3), 1717–1734 (1996).

    Google Scholar 

  41. L. K. Rimskaya-Korsakova, Sensornye Sistemy 30 (4), 333–343 (2016).

  42. A. de Cheveigné, J. Acoust. Soc. Am. 103 (3), 1261–1271 (1998).

    Article  ADS  Google Scholar 

  43. R. Meddis and M. J. Hewitt, J. Acoust. Soc. Am. 91 (1), 233–245 (1992).

    Article  ADS  Google Scholar 

  44. R. Meddis and L. O’Mard, J. Acoust. Soc. Am. 102 (3), 1811–1820 (1997).

    Article  ADS  Google Scholar 

  45. L. K. Rimskaya-Korsakova, Sensornye Sistemy 23 (2), 106–116 (2009).

    Google Scholar 

  46. L. K. Rimskaya-Korsakova, Sensornye Sistemy 25 (4), 305–318 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Rimskaya-Korsavkova.

Additional information

Original Russian Text © L.K. Rimskaya-Korsavkova, 2017, published in Akusticheskii Zhurnal, 2017, Vol. 63, No. 4, pp. 436–448.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimskaya-Korsavkova, L.K. Manifestation of peripherial coding in the effect of increasing loudness and enhanced discrimination of the intensity of tone bursts before and after tone burst noise. Acoust. Phys. 63, 478–489 (2017). https://doi.org/10.1134/S1063771017040121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017040121

Keywords

Navigation