Skip to main content
Log in

Investigation of noise-shielding efficiency with the method of sequences of maximum length in application to the problems of aviation acoustics

  • Atmospheric and Aeroacoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A study of the phenomenon of diffraction of acoustic waves in application to the task of noise shielding by the method of maximum length sequences has been carried out. Rectangular plates and an aircraft model of integrated layout are used as the screens. In the study of noise shielding by aircraft model, the theorem of reciprocity is used. A comparison of experimental results with calculations performed in the framework of the geometrical theory of diffraction (GTD) is performed. On the basis of calculations, the identification of the contributions from different areas of the shielding surface in the full acoustic field is carried out. For the aircraft model, the shielding factor is calculated depending on the frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. von Glahn, D. Groesbeck, and M. Reshotko, in Proc. 7th Fluid Plasma Dynamics Conf. Palo Alto, CA, 1974; AIAA Paper, no. 74–568, 1974.

    Google Scholar 

  2. U. von Glahn, D. Groesbeck, and J. Wagner, AIAA Paper, no. 76–547, 1976.

    Google Scholar 

  3. Z. Maekawa, Appl. Acoust. 1 (3), 157–173 (1968).

    Article  Google Scholar 

  4. E. G. Broadbent, Prog. Aerospace Sci. 17, 231–268 (1977).

    Article  ADS  Google Scholar 

  5. W. Ahtye and G. McCulley, National Aeronautics and Space Administration (NASA Technical Paper, Scientific and Technical Information Office, 1980).

    Google Scholar 

  6. E. V. Vlasov, V. A. Gedymin, and R. K. Karavosov, Uchenye Zapiski TsAGI, 13 (1), p. 30–38 (1982).

    ADS  Google Scholar 

  7. J. J. Bowman, T. B. Senior, and P. L. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (American Elsevier, New York, 1969).

    Google Scholar 

  8. J. I. Hileman, Z. S. Spakovsky, and M. Drela, J. Aircraft 47 (3), 956–969 (2010).

    Article  Google Scholar 

  9. D. Papamoschou and S. Mayoral, AIAA Paper, no. 09–3326, 2009.

  10. T. Nurkan, K. K. Ahuja, and R. J. Gaeta, AIAA Paper, no. 10-3853, 2010.

  11. D. Papamoschou, AIAA Paper, no. 10-653, 2010.

  12. S. Mayoral and D. Papamoschou, AIAA Paper, no. 10–652, 2010.

  13. A. F. Tinetti and M. H. Dunn, AIAA Paper, no. 09–3400, 2009.

  14. A. F. Tinetti and M. H. Dunn, AIAA Paper, no. 05–3061, 2005.

  15. M. Lummer, AIAA Paper, no. 08–3050, 2008.

  16. D. Colas and Z. Spakovszky, AIAA Paper, no. 13–2136, 2013.

  17. A. Agarwal, A. Dowling, Ho-Chul Shin, W. Graham, and S. Sefi, in Proc. 12th AIAA/CEAS Aeroacoustics Conf. Cambridge, Massachusetts, 2006; AIAA Paper, no. 2006–8, 2006.

    Google Scholar 

  18. V. F. Kopiev, N. N. Ostrikov, and S. L. Denisov, in Proc. 3rd Open All-Russian Conf. on Aeroacoustrics, (Zvenigorod, 2013).

    Google Scholar 

  19. N. N. Ostrikov and S. L. Denisov, AIAA Paper, no. 15–2691 2015.

  20. N. N. Ostrikov, S. L. Denisov, and A. L. Medvedskii, Vestn. Nats. Issled. Politekhn. Univ., no. 45, 152–174 (2016).

    Google Scholar 

  21. A. V. Shanin and V. Yu. Valyaev, Acoust. Phys. 57 (3), 427–431 (2011).

    Article  ADS  Google Scholar 

  22. A. V. Shanin and V. Yu. Valyaev, in Proc. 3rd Open All- Russian Conf. on Aeroacoustrics, (Zvenigorod, 2013).

    Google Scholar 

  23. V. Y. Valyaev and A. V. Shanin, Acoust. Phys. 58 (6), 731–739 (2012).

    Article  ADS  Google Scholar 

  24. V. A. Burov and A. A. Shmelev, Acoust. Phys. 55 (4), 482–495 (2009).

    Article  ADS  Google Scholar 

  25. V. A. Burov, S. N. Evtukhov, A. M. Tkacheva, and O. D. Rumyantseva, Acoust. Phys. 54 (5), 615–625 (2008).

    Article  ADS  Google Scholar 

  26. V. A. Burov, S. N. Evtukhov, and O. D. Rumyantseva, Acoust. Phys. 52 (6), 760–776 (2006).

    Article  Google Scholar 

  27. J. P. Paulo, C. R. Martins, and J. L. B. Coelho, Appl. Acoust. 70 (4), 556–562 (2009).

    Article  Google Scholar 

  28. M. Vorländer and M. Kob, Appl. Acoust. 52 (3–4), 239–258 (1997).

    Article  Google Scholar 

  29. M. Vorländer and E. Mommertz, in Proc. Inter-Noise. 1997.

    Google Scholar 

  30. W. K. Lui and K. M. Li, J. Acoust. Soc. Am. 127 (2), 664–674 (2010).

    Article  ADS  Google Scholar 

  31. J. B. Keller, J. Opt. Soc. Am. 52 (2), 116–130 (1962).

  32. R. G. Kouyoumjian and P. H. Pathak, Proc. IEEE 62 (11), 1448–1461 (1974).

    Article  ADS  Google Scholar 

  33. V. A. Borovikov and B. E. Kinber, Geometricheskaya teoriya difraktsii (Geometric Theory of Diffraction), (Svyaz’, Moscow, 1978).

  34. V. M. Babich, D. B. Dementev, B. A. Samokish, V. P. Smyshlyaev, SIAM J. Appl. Math. 60 (2), 536–573 (2000).

  35. A. Zommerfeld, Optik (Wiesbaden, 1950; InLit, Moscow, 1950).

  36. F. J. Fahi, Acoust. Phys. 49 (2), 217–229.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Denisov.

Additional information

Original Russian Text © S.L. Denisov, A.I. Korolkov, 2017, published in Akusticheskii Zhurnal, 2017, Vol. 63, No. 4, pp. 419–435.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, S.L., Korolkov, A.I. Investigation of noise-shielding efficiency with the method of sequences of maximum length in application to the problems of aviation acoustics. Acoust. Phys. 63, 462–477 (2017). https://doi.org/10.1134/S1063771017040017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017040017

Keywords

Navigation