Skip to main content
Log in

Study of the Possibility Of Replacing an Integrated Airframe with a Flat Polygonal Screen to Estimate The Efficiency of Noise Screening of Engines Using Geometric Diffraction Theory

  • ATMOSPHERIC AND AEROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Using the example of an integrated airframe, we performed a computational and experimental study of the possibility of using geometric diffraction theory (GDT) to calculate the sound diffraction when the airframe is replaced with simulating flat polygonal screen as pertains to the effectiveness of noise screening of aircraft power plants. We compared (1) impulse responses experimentally measured with maximum length sequences and the reciprocity theorem for both a three-dimensional model of the airframe and its plane model with (2) the responses calculated using GDT; the results showed good qualitative agreement for observation points in the geometric shadow zone and in the illuminated area, as well as quantitative coincidence in the frequency range characteristic of jet noise and the first harmonics of the blade passing frequency of a propeller or fan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. V. F. Kop’ev, N. N. Ostrikov, and S. L. Denisov, in Proc. 3rd All-Russian Conf. on Aeroacoustics (Central Aerohydrodynamic Institute Named after V. E. Zhukovskii, Moscow, 2013), p. 30 [in Russian].

  2. N. N. Ostrikov and S. L. Denisov, in Proc. 21st AIAA/CEAS Aeroacoustics Conf. (Dallas, 2015), p. 2691.

  3. S. L. Denisov and N. N. Ostrikov, in Proc. 22nd Int. Congress on Sound and Vibration (Florence, July 12–16, 2015), p. 196.

  4. N. N. Ostrikov and S. L. Denisov, in Proc. 22nd AIAA/CEAS Aeroacoustics (Lyon, 2016), p. 3014.

  5. N. N. Ostrikov, S. L. Denisov, and A. L. Medvedskii, Vestn. Permsk. Nats. Issled. Politekh. Univ. Aerokosm. Tekh., No. 2 (45), 152 (2016).

  6. O. P. Bychkov, G. A. Faranosov, S. L. Denisov, and N. N. Ostrikov, Proc. 22nd AIAA/CEAS Aeroacoustics (Lyon, 2016), p. 2932.

  7. C. L. Denisov and A. I. Korolkov, Acoust. Phys. 63 (4), 462 (2017).

    Article  ADS  Google Scholar 

  8. S. L. Denisov and N. N. Ostrikov, in Proc. 5th Int. Workshop “Computational Experiment in AeroAcoustics” CEAA2018 (Svetlogorsk, 2018), p. 51.

  9. V. F. Kopiev, N. N. Ostrikov, and S. L. Denisov, in Proc. Aerospace Europe Conf. (Bordeaux, Feb. 25–28, 2020).

  10. J. B. Keller, J. Opt. Soc. Am. 52 (2), 116 (1962).

    Article  ADS  Google Scholar 

  11. R. G. Kouyoumjian and P. H. Pathak, Proc. IEEE 62 (11) (1974).

  12. V. A. Borovikov and V. E. Kinber, Geometrical Theory of Diffraction (Svyaz’, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  13. A. V. Shanin and V. Yu. Valyaev, Acoust. Phys. 57 (3), 427 (2011).

    Article  ADS  Google Scholar 

  14. A. V. Shanin and V. Yu. Valyaev, in Proc. 3rd All-Russian Conf. on Aeroacoustics (Central Aerohydrodynamic Institute Named after V. E. Zhukovskii, Moscow, 2013), p. 191 [in Russian].

  15. C. L. Burley, T. F. Brooks, F. V. Hutcheson, M. J. Doty, L. V. Lopes, C. L. Nickol, D. D. Vicroy, and D. S. Pope, in Proc. 20th AIAA/CEAS Aeroacoustics (Atlanta, 2014), p. 2626.

  16. F. J. Fahy, Acoust. Phys. 49 (2), 217 (2003).

    Article  ADS  Google Scholar 

  17. A. Sommerfeld, Band 4: Optik (Dieterich’sche Verlagsbuch, Wiesbaden, 1950; Inostrannaya Literatura, Moscow, 1950).

  18. V. F. Kop’ev, M. Yu. Zaitsev, N. N. Ostrikov, S. L. Denisov, S. Yu. Makashov, V. A. Anikin, and V. V. Gromov, Acoust. Phys. 62 (6), 741 (2016).

    Article  ADS  Google Scholar 

  19. S. L. Denisov, M. Yu. Zaitsev, and S. Yu. Makashov, in Proc. 5th All-Russian Conf. on Aeroacoustics (Central Aerohydrodynamic Institute Named after V. E. Zhukovskii, Moscow, 2017), p. 61 [in Russian].

  20. V. V. Pakhov, K. V. Faizullin, and S. L. Denisov, Acoust. Phys. 66 (1), 44 (2020).

    Article  ADS  Google Scholar 

  21. J. B. Keller, IRE Trans. Antennas Propag. AP-24, 312 (1956).

    Article  ADS  Google Scholar 

  22. R. G. Kouyoumjian, P. H. Pathak, and W. D. Burnside, in Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures, Ed. by J. K. Skwirzynski (Springer Netherlands, Amsterdam, 1981), p. 497.

    Google Scholar 

  23. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 5th ed. (Butterworth/Heinemann, 2000).

    MATH  Google Scholar 

  24. T. W. Wu, Boundary Element Acoustics. Fundamentals and Computer Codes (WIT Press, 2000).

    MATH  Google Scholar 

  25. V. M. Babich, D. B. Dementev, B. A. Samokish, and V. P. Smyshlyaev, SIAM J. Appl. Math. 60, 536 (2000).

    Article  MathSciNet  Google Scholar 

  26. Y. Z. Umul, Opt. Quantum Electron. 51, 375 (2019).

    Article  Google Scholar 

  27. E. Skudrzyk, The Foundations of Acoustics (Springer, New York, 1971; Mir, Moscow, 1976), Vol. 2.

Download references

ACKNOWLEDGMENTS

The study was carried out in the TsAGI AC-2 with flow.

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation under agreement no. 075-11-2018-178 (unique agreement identifier RFMEFI62818X0011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. L. Denisov or N. N. Ostrikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, S.L., Ostrikov, N.N. & Pankratov, I.V. Study of the Possibility Of Replacing an Integrated Airframe with a Flat Polygonal Screen to Estimate The Efficiency of Noise Screening of Engines Using Geometric Diffraction Theory. Acoust. Phys. 66, 624–632 (2020). https://doi.org/10.1134/S1063771020060020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020060020

Keywords:

Navigation