Skip to main content
Log in

Correlation of neural responses in the cochlear nucleus with low-frequency noise amplitude modulation of a tonal signal

  • Acoustics of Living Systems. Bioacoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The responses of single neurons of the cochlear nucleus of a grass frog to long tonal signals amplitude-modulated by repeat intervals of low-frequency noise have been studied. The carrier frequency always corresponded to the characteristic frequency of the studied cell (a range of 0.2 kHz–2 kHz); the modulated signal was noise in the ranges 0–15 Hz, 0–50 Hz, or 0–150 Hz. We obtained the correlation functions of the cyclic histogram reflecting the change in probability of a neuron pulse discharge (spike) during the modulation period with the shape of the signal envelope in the same period. The form of the obtained correlation functions usually does not change qualitatively with a change in carrier level or modulation depth; however, this could essentially depend of the frequency component of the modulating function. In the majority of cases, comparison of the cyclic histogram of the reaction with only the current amplitude value does not adequately reveal the signal’s time features that determine the reaction of a neuron. The response is also determined by the other sound features, primarily by the rate of the change in amplitude. The studied neurons differed among themselves, both in preference toward a certain range of modulated frequencies and in the features of the envelope that caused the cell’s response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Gershuni, Ya. A. Al’tman, I. A. Vartanyan, E. A. Radionova, A. V. Popov, and G. N. Shmigidina, Neirofiziologiya 1, 137 (1969).

    Google Scholar 

  2. E. A. Radionova, Functional Characteristics of Cochlear Kernel Neurons and Hearing Function (Nauka, Leningrad, 1971) [in Russian].

    Google Scholar 

  3. P. Heil, J. Neurophysiol. 7, 2616 (1997).

    Google Scholar 

  4. L. Swarbrick and I. C. Whitfield, J. Physiology 224, 68 (1972).

    Google Scholar 

  5. J. J. Eggermont, Hearing Res. 271, 123 (2011).

    Article  Google Scholar 

  6. N. G. Bibikov, Akust. Zh. 34, 400 (1988).

    Google Scholar 

  7. N. G. Bibikov, Acoust. Phys. 54, 579 (2008).

    Article  ADS  Google Scholar 

  8. N. G. Bibikov, Usp. Fiziolog. Nauk 41, 72 (2010).

    Google Scholar 

  9. N. G. Bibikov and S. V. Nizamov, Biophysics 54, 637 (2009).

    Article  Google Scholar 

  10. N. G. Bibikov, Sensor. Sist. 21, 72 (2007).

    Google Scholar 

  11. I. Dean, N. S. Harper, and D. McAlpine, Nature Neuroscience 8, 1684 (2005).

    Article  Google Scholar 

  12. B. Wen, G. I. Wang, I. Dean, and B. Delgutte, J. Neurophysiol. 108, 69 (2012).

    Article  Google Scholar 

  13. B. J. Malone, B. H. Scott, and M. N. Semple, J. Neurophysiol. 98, 1451 (2007).

    Article  Google Scholar 

  14. N. Hu, C. A. Miller, P. I. Abbas, B. K. Robinson, and J. I. Woo, J. Assoc. Res. Otolaringol. 11, 641 (2010).

    Article  Google Scholar 

  15. N. G. Bibikov and I. P. Makeeva, Akust. Zh. 35, 1004 (1989).

    Google Scholar 

  16. A. R. Møller and A. Rees, Hearing Res. 24, 203 (1986).

    Article  Google Scholar 

  17. A. R. Møller, Experim. Neurology 45, 105 (1974).

    Google Scholar 

  18. N. G. Bibikov and O. N. Gorodetskaya, Neirofiziologiya 12, 264 (1980).

    Google Scholar 

  19. B. S. Krishna and M. N. Semple, J. Neurophysiol. 84, 255 (2000).

    Google Scholar 

  20. B. J. Malone, B. H. Scott, and M. N. Semple, J. Neuroscience 30, 767 (2010).

    Article  Google Scholar 

  21. G. Langner, Hearing Res. 60, 115 (1992).

    Article  Google Scholar 

  22. E. De Boer and P. Kuyper, IEEE Trans. Biomed. Eng. 15, 169 (1968).

    Article  Google Scholar 

  23. A. Rees, Hearing Res. 27, 129 (1987).

    Article  Google Scholar 

  24. N. G. Bibikov, Correlation methods of hearing system single neuron reaction analysis, in Sensor Systems. Hearing (Nauka, Leningrad, 1982), p. 58 [in Russian].

    Google Scholar 

  25. N. G. Bibikov, Sensor. Sist. 1, 353 (1987).

    Google Scholar 

  26. P. X. Joris, B. Van de Sande, and M. van der Heijden, J. Neurophysiol. 93, 1857 (2005).

    Article  Google Scholar 

  27. A. M. H. J. Aertsen, P. I. M. Johannesma, and D. J. Hermes, Biological Cybernetic 38, 235 (1980).

    Article  Google Scholar 

  28. J. J. Eggermont, A. M. H. J. Aertsen, and P. I. M. Johannesma, Hearing Res. 10, 191 (1983).

    Article  Google Scholar 

  29. P. J. Kim and E. D. Young, J. Acoust. Soc. Am. 95, 410 (1994).

    Article  ADS  Google Scholar 

  30. D. A. Depireux, J. Z. Simon, D. J. Klein, and S. A. Shamma, J. Neurophysiol. 85, 1220 (2001).

    Google Scholar 

  31. H. Versnel, M. P. Zwiers, and A. J. van Opstal, J. Neuroscience 29, 9725 (2009).

    Article  Google Scholar 

  32. N. G. Bibikov, Neirofiziologiya 22, 227 (1990).

    Google Scholar 

  33. I. Nelken, P. J. Kim, and E. D. Young, J. Neurophysiol. 78, 800 (1997).

    Google Scholar 

  34. L. Xu, C. S. Thompson, and B. E. Pfingst, J. Acoust. Soc. Am. 117, 3255 (2005).

    Article  ADS  Google Scholar 

  35. K. G. Ranasinghe, W. A. Vrana, C. J. Matney, and M. P. Kilgard, J. Assoc. Research Otolaringol. 13, 527 (2012).

    Article  Google Scholar 

  36. N. G. Bibikov and S. V. Nizamov, in Proc. 24th Acoust. Conf. (GEOS, Saratov, 2011), p. 103.

    Google Scholar 

  37. N. G. Bibikov and S. V. Nizamov, in Proc 16th Congress “Achievements of Neurosciencs for Contemporary Medicine and Psychology,” Sudak, 2011, p. 87.

    Google Scholar 

  38. H. M. Kaplan, Proc. Fed. Am. Soc. Exp. Biol. 28, 1541 (1969).

    Google Scholar 

  39. M. A. Suckow, L. A. Terril, C. F. Grigdesby, and P. A. March, Pharmacol. Biochem. Behav. 63, 39 (1999).

    Article  Google Scholar 

  40. M. Zimmermann, Neurosci. Lett. 73, 1 (1987).

    Article  Google Scholar 

  41. T. U. Grafe, S. A. Döbler, and K. E. Linsenmair, Proc. Biol. Sci. 269, 999 (2002).

    Article  Google Scholar 

  42. V. Neuert, D. Pressnitzer, R. D. Patterson, and I. M. Winter, Hearing Res. 159, 36 (2001).

    Article  Google Scholar 

  43. T. Lu, L. Liang, and X. Wang, J. Neurophysiol. 85, 2364 (2001).

    Google Scholar 

  44. E. De Boer and H. R. De Jongh, J. Acoust. Soc. Am. 63, 115 (1978).

    Article  ADS  Google Scholar 

  45. P. Yin and J. S. Johnson, K. N. O’Connor, and M. L. Sutter, J. Neurophysiol. 105, 582 (2011).

    Article  Google Scholar 

  46. Y. Zhou and X. Wang, J. Neuroscience 30, 16741 (2010).

    Article  Google Scholar 

  47. T. O. Sharpee, K. I. Nagel, and A. J. Doupe, J. Neurophysiol. 106, 1841 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Bibikov.

Additional information

Original Russian Text © N.G. Bibikov, 2014, published in Akusticheskii Zhurnal, 2014, Vol. 60, No. 5, pp. 555–566.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibikov, N.G. Correlation of neural responses in the cochlear nucleus with low-frequency noise amplitude modulation of a tonal signal. Acoust. Phys. 60, 597–607 (2014). https://doi.org/10.1134/S1063771014050029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771014050029

Keywords

Navigation