Skip to main content
Log in

Some features of the sound-signal envelope extracted by cochlear nucleus neurons in grass frog

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The responses of single neurons in the medullar auditory center of the grass frog were recorded extracellularly under the action of long tone signals of a characteristic frequency that were modulated by repeating fragments of low-frequency (0–15, 0–50 or 0–150 Hz) noise. The correlation method was used for evaluating the strength of the effect of different envelope fragments to ensure the generation of a neuron pulse discharge. While carrying out these evaluations at different time intervals, the maximum delays were assessed between a signal and a response. Two important envelope fragments were revealed. In the majority of units the most effective fragment was the time interval of the amplitude increase from the mean value to the maximum; the fragment where the amplitude fell from the maximum to the mean value was the second in the strength of the effect. This type of response was observed in the vast majority of cells in the range of the envelope frequency bands 0–150 and 0–50 Hz. These cells performed half-wave rectification of this type of envelope. However, in some neurons we observed a stronger strength of the reaction toward a time interval with a increasing amplitude, even including those where the amplitude value was smaller than the mean one. These properties were observed mainly for low-frequency (0–15 Hz) modulated signals at high modulation depth. The data show that even in the medulla oblongata specialization of neural elements of the auditory pathway occurs with respect to the time interval features of the sound stimulus. This diversity is most evident for signals with relatively slowly varying amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Bibikov, Akust. Zh. 34 (3), 400 (1988).

    Google Scholar 

  2. N. G. Bibikov, Biophysics (Moscow) 49 (1), 97 (2004).

    Google Scholar 

  3. N. G. Bibikov, Sensorn. Sist. 27 (3), 195 (2013).

    Google Scholar 

  4. N. G. Bibikov and O. N. Grubnik, in Acoustical Signal Processing in the Central Auditory System (Plenum Press, New York, 1997), pp. 271–277.

    Book  Google Scholar 

  5. N. G. Bibikov and S. V. Nizamov, Hear. Res. 101 (1), 23 (1996).

    Article  Google Scholar 

  6. I. Dean, N. S. Harper, and D. McAlpine, Nat. Neurosci. 8, 1684 (2005).

    Article  Google Scholar 

  7. K. J. Hildebrandt, J. Benda, and R. M. Hennig, J. Comp. Physiol. A 201, 39 (2015).

    Article  Google Scholar 

  8. G. A. Bakhtin and N. G. Bibikov, Akust. Zh. 19 (4), 614 (1974).

    Google Scholar 

  9. N. G. Bibikov, Sensorn. Sist. 21 (1), 72 (2007).

    MathSciNet  Google Scholar 

  10. E. De Boer and H. R. De Jongh, J. Acoust. Soc. Am. 63 (1), 115 (1978).

    Article  ADS  Google Scholar 

  11. N. G. Bibikov, Sensorn. Sist. 1 (3), 353 (1987).

    Google Scholar 

  12. A. M. Aertsen and P. I. Johannesma, Biol. Cybern. 42, 133 (1981).

    Article  MATH  Google Scholar 

  13. N. C. Rabinowitz, B. D. Willmore, J. W. Schnupp, and A. J. King, J. Neurosci. 32 (33), 11271 (2012).

    Article  Google Scholar 

  14. J. J. Eggermont, P. I. M. Johannesma, and A. Aertsen, Quart. Rev. Biophys. 16, 341 (1983).

    Article  Google Scholar 

  15. A. R. Moller, Brain Res. 57 (2), 443 (1973).

    Article  ADS  Google Scholar 

  16. N. G. Bibikov, Sensorn. Sist. 3 (3), 364 (1990).

    Google Scholar 

  17. N. G. Bibikov, O. B. Ovchinnikov, and S. V. Nizamov, Biophysics (Moscow) 46 (3), 520 (2001).

    Google Scholar 

  18. P. A. Valentine and J. J. Eggermont, Hear. Res. 196, 119 (2004).

    Article  Google Scholar 

  19. P. Gill, J. Zhang, S. M. Woolley, et al., J. Comput. Neurosci. 21 (1), 5 (2006).

    Article  MATH  Google Scholar 

  20. B. Gourevitch, A. Norena, G. Shaw, and J. J. Eggermont, Cereb. Cortex 19, 1448 (2009).

    Article  Google Scholar 

  21. T. M. Elliott and F. E. Theunissen, PLoS Comp. Biol. 5 (3), e1000302 (2009).

    Article  ADS  Google Scholar 

  22. A. Calabrese, J. W. Schumacher, D. M. Schneider, et al., PLOS ONE 6, e16104 (2011).

    Article  ADS  Google Scholar 

  23. N. G. Bibikov and S. V. Nizamov, in Proc. 17th All-Russia Conf. “Neuroinformatics” (2015), Vol. 3, p. 191.

    Google Scholar 

  24. H. M. Kaplan, Proc. Fed. Am. Soc. Exp. Biol. 28, 1541 (1969).

    Google Scholar 

  25. M. A. Suckow, L. A. Terril, C. F. Grigdesby, and P. A. March, Pharmacol. Biochem. Behav. 63, 39 (1999).

    Article  Google Scholar 

  26. N. G. Bibikov, Acoust. Phys. 60 (5), 597. (2014).

    Article  MathSciNet  ADS  Google Scholar 

  27. I. J. Russell and P. M. Sellick, J. Physiol. 284 (1), 261 (1978).

    Article  Google Scholar 

  28. Y. Gai, V. C. Kotak, D. H. Sanes, and J. Rinzel, J. Neurophysiol. 112, 802 (2014).

    Article  Google Scholar 

  29. B. J. Malone, B. H. Scott, and M. N. Semple, J. Neurosci. 30 (2), 767 (2010).

    Article  Google Scholar 

  30. Y. Zhou and X. Wang, J. Neurosci. 30 (49), 16741 (2010).

    Article  Google Scholar 

  31. Y. Zheng and M. A. Escabi, J. Neurosci. 28 (52), 14230 (2008).

    Article  Google Scholar 

  32. Y. Wang and J. L. Pena, J. Neurosci. 33 (49), 19167 (2013).

    Article  Google Scholar 

  33. S. V. David and S. A. Shamma, J. Neurosci. 33 (49), 19154 (2013).

    Article  Google Scholar 

  34. J. L. Pena and M. Konishi, J. Neurosci. 22 (13), 5652 (2002).

    Google Scholar 

  35. B. Fontaine, J. L.Pena, and R. Brette, PLoS Comp. Biol. 10 (4), e1003560 (2014).

    Article  ADS  Google Scholar 

  36. M. J. Ferragamo and D. Oertel, J. Neurophysiol. 87 (5), 2262 (2002).

    Google Scholar 

  37. N. G. Bibikov abd G. I. Ivanitsky, Biofizika 30 (1), 141 (1985).

    Google Scholar 

  38. H. Asari and A. M. Zador, J. Neurophysiol. 102 (5), 2638 (2009).

    Article  Google Scholar 

  39. H. G. Eyherabide, A. Rokem, A. V. Herz, and I. Samengo, Front. Comp. Neurosci. 2, Art. 3 (2008).

    Google Scholar 

  40. Y. Lerner, C. J. Honey, M. Katkov, and U. Hasson, J. Neurophysiol. 111, 2433 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Bibikov.

Additional information

Original Russian Text © N.G. Bibikov, 2015, published in Biofizika, 2015, Vol. 60, No. 3, pp. 506–518.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibikov, N.G. Some features of the sound-signal envelope extracted by cochlear nucleus neurons in grass frog. BIOPHYSICS 60, 409–419 (2015). https://doi.org/10.1134/S0006350915030045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915030045

Keywords

Navigation