Skip to main content
Log in

Counterpropagation of waves with shock fronts in a nonlinear tissue-like medium

  • Nonlinear Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A numerical model for describing the counterpropagation of one-dimensional waves in a nonlinear medium with an arbitrary power law absorption and corresponding dispersion is developed. The model is based on general one-dimensional Navier-Stokes equations with absorption in the form of a time-domain convolution operator in the equation of state. The developed algorithm makes it possible to describe wave interactions in the presence of shock fronts in media like biological tissue. Numerical modeling is conducted by the finite difference method on a staggered grid; absorption and sound speed dispersion are taken into account using the causal memory function. The developed model is used for numerical calculations, which demonstrate the absorption and dispersion effects on nonlinear propagation of differently shaped pulses, as well as their reflection from impedance acoustic boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Physical Principles in Ultrasound Medicine, Ed. by K. Hill, D. Bember, and G. Haar (Wiley, London, 2004), 2nd ed.

    Google Scholar 

  2. M. R. Beiley, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, Acoust. Phys. 49, 369 (2003).

    Article  ADS  Google Scholar 

  3. O. V. Rudenko, Phys.-Usp. 50, 359 (2007).

    Article  ADS  Google Scholar 

  4. M. A. Averkiou, in Proc. IEEE Int. Ultrasonics Symp., 2000, Vol. 2, pp. 1563–1572.

  5. V. A. Khokhlova, A. E. Ponomarev, M. A. Averkiou, and L. A. Crum, Acoust. Phys. 52, 481 (2006).

    Article  ADS  Google Scholar 

  6. M. A. Averkiou and R. O. Cleveland, J. Acoust. Soc. Am. 106, 102 (1999).

    Article  ADS  Google Scholar 

  7. S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, J. Acoust. Soc. Am. 111, 2049 (2002).

    Article  ADS  Google Scholar 

  8. E. A. Filonenko and V. A. Khokhlova, Acoust. Phys. 47, 468 (2001).

    Article  ADS  Google Scholar 

  9. O. V. Rudenko and S. N. Gurbatov, Acoust. Phys. 58, 242 (2012).

    ADS  Google Scholar 

  10. O. V. Rudenko, S. N. Gurbatov, and I. Yu. Demin, Acoust. Phys. 59, 584 (2013).

    Article  ADS  Google Scholar 

  11. I. M. Hallaj and R. O. Cleveland, J. Acoust. Soc. Am. 105, L7 (1999).

    Article  ADS  Google Scholar 

  12. L. Demi, K. W. A. van Dongen, and M. D. Verweij, J. Acoust. Soc. Am. 129, 1221 (2011).

    Article  Google Scholar 

  13. O. V. Rudenko, S. I. Soluyan, and R. V. Khokhlov, Akust. Zh. 20, 449 (1974).

    Google Scholar 

  14. M. O’Donnel, E. T. Janes, and J. G. Miller, J. Acoust. Soc. Am. 63, 1935 (1978).

    Article  ADS  Google Scholar 

  15. M. D. Collins, J. Acoust. Soc. Am. 84, 2114 (1988).

    Article  ADS  Google Scholar 

  16. T. L. Szabo, J. Acoust. Soc. Am. 97, 14 (1995).

    Article  ADS  Google Scholar 

  17. H. A. Jongen, J. M. Thijssen, M. van den Aarssen, and W. A. Verhoef, J. Acoust. Soc. Am. 79, 535 (1986).

    Article  ADS  Google Scholar 

  18. R. O. Cleveland, M. F. Hamilton, and D. T. Blackstock, J. Acoust. Soc. Am. 99, 3312 (1996).

    Article  ADS  Google Scholar 

  19. G. F. Pinton, J. Dahl, S. Rosenzweig, and G. E. Trahey, IEEE UFFC 56, 474 (2009).

    Article  Google Scholar 

  20. W. Chen and S. Holm, J. Acoust. Soc. Am. 115, 1424 (2004).

    Article  ADS  Google Scholar 

  21. B. E. Treeby and B. T. Cox, J. Acoust. Soc. Am. 127, 2741 (2010).

    Article  ADS  Google Scholar 

  22. B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, J. Acoust. Soc. Am. 131, 4324 (2012).

    Article  ADS  Google Scholar 

  23. I. Drumm, Finite Difference Time Domain Tutorial (EPSRC Summer School, 2007).

    Google Scholar 

  24. T. D. Khokhlova, M. S. Canney, V. A. Khokhlova, O. A. Sapozhnikov, L. A. Crum, and M. R. Bailey, J. Acoust. Soc. Am. 130, 3498 (2011).

    Article  ADS  Google Scholar 

  25. A. D. Maxwell, T.-Y. Wang, C. A. Cain, J. B. Fowlkes, O. A. Sapozhnikov, M. R. Bailey, and Z. Xu, J. Acoust. Soc. Am. 130, 1888 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Lobanova.

Additional information

Original Russian Text © E.G. Lobanova, S.V. Lobanov, V.A. Khokhlova, 2014, published in Akusticheskii Zhurnal, 2014, Vol. 60, No. 4, pp. 356–367.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanova, E.G., Lobanov, S.V. & Khokhlova, V.A. Counterpropagation of waves with shock fronts in a nonlinear tissue-like medium. Acoust. Phys. 60, 387–397 (2014). https://doi.org/10.1134/S1063771014040071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771014040071

Keywords

Navigation