Skip to main content
Log in

Wave Resonance and the Supersonic Generation of Shear Waves in Dissipative Media

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A new means of the supersonic generation and resonant amplification of shear elastic waves in dissipative media is developed. The procedure is based on the remote formation of a source of low-frequency shear waves inside a biological tissue under the radiation pressure of a focused ultrasonic beam. Finite-difference modeling of the propagation of low-frequency shear waves in biological tissues is performed. Measurements and visualization of focused acoustic fields along with a Mach spiral structures in acoustic phantoms are performed that confirm the efficiency and feasibility of the developed means of the supersonic generation and resonant amplification of shear waves in biological tissues for ultrasonic diagnostics and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ophir, J., Cespedes, E.I., Ponnekanti, H., et al., Ultrason. Imaging, 1991, vol. 13, p. 111.

    Article  Google Scholar 

  2. Muthupillai, R., Lomas, D.J., Rossman, P.J., et al., Science, 1995, vol. 269, p. 1854.

    Article  ADS  Google Scholar 

  3. Bercoff, J., Chaffai, S., Tanter, M., et al., Ultrasound Med. Biol., 2003, vol. 29, no. 10, p. 1387.

    Article  Google Scholar 

  4. Fatemi, M. and Greenleaf, J.F., Science, 1998, vol. 280, p. 82.

    Article  ADS  Google Scholar 

  5. Sarvazyan, A.P., Rudenko, O.V., Swanson, S.D., et al., Ultrasound Med. Biol., 1998, vol. 20, p. 1419.

    Article  Google Scholar 

  6. Nightingale, K., Soo, M.S., Nightingale, R., et al., Ultrasound Med. Biol., 2002, vol. 28, p. 227.

    Article  Google Scholar 

  7. Bercoff, J., Chaffai, S., Tanter, M., et al., Ultrasound Med. Biol., 2003, vol. 29, p. 1387.

    Article  Google Scholar 

  8. Bercoff, J., Tanter, M., and Fink, M., IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2004, vol. 51, p. 396.

    Article  Google Scholar 

  9. Prieur, F. and Sapozhnikov, O.A., J. Acoust. Soc. Am., 2017, vol. 142, no. 2, p. 947.

    Article  ADS  Google Scholar 

  10. Shvetsova, N.A., Makarev, D.I., Shvetsov, I.A., Shcherbinin, S.A., and Rybyanets, A.N., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 3, p. 251.

    Article  Google Scholar 

  11. Rybyanets, A.N., Naumenko, A.A., Sapozhnikov, O.A., et al., Phys. Proc., 2015, vol. 70, p. 1152.

    Article  ADS  Google Scholar 

  12. Rybyanets, A.N., Shvetsov, I.A., Shcherbinin, S.A., et al., J. Nano-Electron. Phys., 2018, vol. 10, no. 2, p. 02043.

    Google Scholar 

  13. Lugovaya, M.A., Naumenko, A.A., Rybyanets, A.N., et al., Ferroelectrics, 2015, vol. 484, no. 1, p. 87.

    Article  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Education and Science as part of a State Task, contract nos. 12.5425.2017/8.9 and 3.8863.2017/7.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Rybyanets.

Additional information

Translated by N. Podymova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybyanets, A.N., Shvetsova, N.A., Shvetsov, I.A. et al. Wave Resonance and the Supersonic Generation of Shear Waves in Dissipative Media. Bull. Russ. Acad. Sci. Phys. 83, 1062–1066 (2019). https://doi.org/10.3103/S1062873819090235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873819090235

Navigation