Skip to main content
Log in

On the role of relaxation processes in the acoustic mechanism of supramolecular structure formation in nematic liquid crystals

  • Physical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

We have for the first time developed and tested a model constructed on the basis of nonequilibrium hydrodynamics and postulating that the structural relaxation processes of a nematic liquid crystal (NLC) in wave fields are important for the formation of supramolecular structures in the form of a system of linear domains in a planar mesophase layer. Distortions in the macrostructure of an NLC layer in the field of longitudinal waves were observed in the frequency range of 0.9–18.9 MHz. The values of the spatial period of domains at the threshold of the effect and the threshold amplitudes of the vibrational speed were determined for 10–300-μm-thick layers in wave fields with different degrees of uniformity for the temperature range where the mesophase exists. The simulation results are compared to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Kapustin and L. M. Dmitriev, Kristallografiya 7, 332 (1962).

    Google Scholar 

  2. O. A. Kapustina and V. N. Lupanov, Zh. Eksper. Teor. Fiz. 71, 2325 (1976).

    Google Scholar 

  3. O. A. Kapustina and V. N. Lupanov, in Proc. 4th Conf. of Socialist Countries on Liquid Crystals, vol. 2, 1981, p. 64.

    Google Scholar 

  4. Physical Properties of Liquid Crystals, Ed. by D. Demus et al. (Wiley, Weinheim, 1999).

    Google Scholar 

  5. P. G. de Gennes, The Physics of Liquid Crystals (Oxford University, Oxford, 1974; Mir, Moscow, 1977).

    Google Scholar 

  6. E. N. Kozhevnikov, Akust. Zh. 40, 613 (1994).

    Google Scholar 

  7. C. A. Castro, A. Hikata, and C. Elbaum, Phys. Rev. A 17, 353 (1979).

    Article  ADS  Google Scholar 

  8. G. Gähviller, Mol. Cryst. Liquid Crystals 20, 301 (1973).

    Article  Google Scholar 

  9. M. A. Osipov and E. M. Terentjev, Phys. Lett. A 134, 301 (1989).

    Article  ADS  Google Scholar 

  10. V. A. Balandin, A. I. Larionov, and S. V. Pasechnik, Zh. Eksper. Teor. Fiz. 83, 2121 (1982).

    Google Scholar 

  11. J. S. Lee, S. L. Golub, and G. H. Brown, J. Chem. Phys. 76, 2409 (1972).

    Article  Google Scholar 

  12. N. A. Tikhomirova, L. K. Vistin’, and V. N. Nosov, Kristallografiya 17, 1000 (1972).

    Google Scholar 

  13. O. A. Kapustina, Crystallography Rep. 58, 150 (2013).

    Article  ADS  Google Scholar 

  14. V. I. Domarkas and R. I. Kazhis, Control-Measurement Piezoelectric Transformers (MINTIS, Vilnus, 1975) [in Russian].

    Google Scholar 

  15. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1964).

    Google Scholar 

  16. L. Bergman, Der Ultraschall und sein Anwendung in Wissenschaft und Technik (Zurich, Deutschland, 1954; Inostr. Lit., Moscow, 1956).

    Google Scholar 

  17. E. N. Kozhevnikov, Akust. Zh. 27, 533 (1981).

    Google Scholar 

  18. E. I. Zhukovskaya, E. N. Kozhevnikov, and V. M. Podol’skii, Zh. Eksper. Teor. Fiz. 88, 207 (1982).

    Google Scholar 

  19. S. A. Pikin, Strukturnye prevrashcheniya v zhidkikh kristallakh (Structural Transformations in Liquid Crystals) (Nauka, Moscow, 1981).

    Google Scholar 

  20. E. Guyon and P. Pieranski, Phys. Rev. A: Atom., Molec., and Opt. Phys. 9, 404 (1974).

    Article  Google Scholar 

  21. A. P. Kapustin, Acoustics of Liquid Crystals (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  22. E. N. Kozhevnikov, Acoust. Phys. 56, 24 (2010).

    Article  ADS  Google Scholar 

  23. O. Kapustina, J. Acoust. Soc. Am. 123, 3279 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kapustina.

Additional information

Original Russian Text © O.A. Kapustina, E.N. Kozhevnikov, S.P. Chumakova, 2014, published in Akusticheskii Zhurnal, 2014, Vol. 60, No. 3, pp. 243–252.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapustina, O.A., Kozhevnikov, E.N. & Chumakova, S.P. On the role of relaxation processes in the acoustic mechanism of supramolecular structure formation in nematic liquid crystals. Acoust. Phys. 60, 269–278 (2014). https://doi.org/10.1134/S1063771014030099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771014030099

Keywords

Navigation