Skip to main content
Log in

Analysis of shape perturbations of a drop on a vibrating substrate for different wetting angles

  • Physical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

An exact solution is obtained to the problem of axisymmetric normal modes and natural frequencies characterizing surface perturbations of a drop that sits with an arbitrary wetting angle on a substrate and experiences only gravity and surface tension. The resulting mode solutions are used to calculate and analyze different shapes of the perturbed surface for the same drop placed on a vibrating base. The distinctive feature of the present study is the explicit representation of the results in the form of calculated shapes of the surface of a vibrating drop, comparison of the parameters of actual drops with resonance frequencies, and comparison with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord Kelvin, in Mathematical and Physical Papers, vol. 3, art. XCVI (Clay and Sond, Cambridge Univ., 1890), p. 530.

  2. Lord Rayleigh, The Theory of Sound, vol. 2 (Macmillan, London, 1896), p. 504

    Google Scholar 

  3. Lord Rayleigh, Phil. Mag. 34, 94 (1917).

    Google Scholar 

  4. R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles (Academic Press, 1978), p. 380.

  5. A. Prosperetti, J. Fluid Mech. 100, 333 (1980).

    Article  MATH  ADS  Google Scholar 

  6. E. H. Trinh, D. B. Thiessen, and R. G. Holt, J. Fluid Mech. 364, 253 (1998).

    Article  MATH  ADS  Google Scholar 

  7. R. E. Apfel, J. Acoust. Soc. Am. 101, 1227 (1997).

    Article  ADS  Google Scholar 

  8. T. G. Leighton, The Acoustic Bubble (Academic Press, 1994), p. 613.

  9. Y. N. Makov, Acoust. Phys. 55, 547 (2009).

    Article  ADS  Google Scholar 

  10. P. L. Marston and R. E. Apfel, J. Acoust. Soc. Am. 67(2), 27 (1980).

    Article  ADS  Google Scholar 

  11. T. Shi and R. E. Apfel, Phys. Fluids 7, 1545 (1995).

    Article  MATH  ADS  Google Scholar 

  12. Z. C. Feng and Y. H. Su, Phys. Fluids 9, 519 (1997).

    Article  ADS  Google Scholar 

  13. Y. Abe, D. Hyuga, S. Yamada, and K. Aoki, Ann. (N.Y.) Acad. Sci. 1077, 49 (2006).

    Article  ADS  Google Scholar 

  14. H. Frenzel and H. Schultes, Z. Phys. Chem. B 27, 421 (1934).

    Google Scholar 

  15. M. P. Brenner, S. Hilgenfeldt, and D. Lohse, Rev. Mod. Phys. 74, 425 (2002).

    Article  ADS  Google Scholar 

  16. R. I. Nigmatulin and R. P. Taleyarkhan, Proc. Inst. Mech. Eng. A: J. Power Energy 218, 345 (2004).

    Article  Google Scholar 

  17. P. G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Article  ADS  Google Scholar 

  18. E. G. Rapis, Pis’ma Zh. Tekh. Fiz. 14, 1560 (1988) [Sov. Tech. Phys. Lett. 14, 679 (1988)].

    Google Scholar 

  19. Yu. Yu. Tarasevich, Usp. Fiz. Nauk 174, 779 (2004) [Phys. Usp. 47, 717 (2004)].

    Article  Google Scholar 

  20. L. V. Andreeva, A. S. Novoselova, P. V. Lebedev-Stepanov, et al., Zh. Tekh. Fiz. 77(2), 22 (2007) [Tech. Phys. 52, 164 (2007)].

    Google Scholar 

  21. J. Dutta and H. Hofmann, in Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (Am. Sci. Publ. 2003), Vol. 10, pp. 1–23.

  22. H. Li, J. R. Friend, and L. Y. Yeo, Biomed. Microdev. 9, 647 (2007).

    Article  Google Scholar 

  23. D. V. Lyubimov, N. P. Lyubimova, and S. V. Shklyaev, Phys. Fluids 18, 012101 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  24. I. S. Fayzrakhmanova and A. V. Straube, http://arxiv.org/abs/0903.2580.

  25. L. D. Landau and M. E. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  26. B. Vukasinovic, M. K. Smit, and A. Glezer, J. Fluid Mech. 587, 395 (2007).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Makov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyukhina, M.A., Makov, Y.N. Analysis of shape perturbations of a drop on a vibrating substrate for different wetting angles. Acoust. Phys. 55, 722–728 (2009). https://doi.org/10.1134/S1063771009060050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771009060050

PACS numbers

Navigation