Skip to main content
Log in

Nonlinear pulsed ultrasound beams radiated by rectangular focused diagnostic transducers

  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A numerical model for simulating nonlinear pulsed beams radiated by rectangular focused transducers, which are typical of diagnostic ultrasound systems, is presented. The model is based on a KZK-type nonlinear evolution equation generalized to an arbitrary frequency-dependent absorption. The method of fractional steps with an operator-splitting procedure is employed in the combined frequency-time domain algorithm. The diffraction is described using the implicit backward finite-difference scheme and the alternate direction implicit method. An analytic solution in the time domain is employed for the nonlinearity operator. The absorption and dispersion of the sound speed are also described using an analytic solution but in the frequency domain. Numerical solutions are obtained for the nonlinear acoustic field in a homogeneous tissue-like medium obeying a linear frequency law of absorption and in a thermoviscous fluid with a quadratic frequency law of absorption. The model is applied to study the spatial distributions of the fundamental and second harmonics for a typical diagnostic ultrasound source. The nonlinear distortion of pulses and their spectra due to the propagation in tissues are presented. A better understanding of nonlinear propagation in tissue may lead to improvements in nonlinear imaging and in specific tissue harmonic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. S. Lee and M. F. Hamilton, J. Acoust. Soc. Am. 97, 906 (1995).

    Article  ADS  Google Scholar 

  2. J. Tavakkoli, D. Cathignol, R. Souchon, and O. A. Sapozhnikov, J. Acoust. Soc. Am. 104, 2061 (1998).

    Article  ADS  Google Scholar 

  3. M. A. Averkiou and M. F. Hamilton, J. Acoust. Soc. Am. 102, 2539 (1997).

    Article  ADS  Google Scholar 

  4. A. C. Baker, A. M. Berg, and A. Sahin, J. Acoust. Soc. Am. 97, 3510 (1995).

    Article  ADS  Google Scholar 

  5. T. Kamakura, M. Tani, Y. Kumamoto, and K. Ueda, J. Acoust. Soc. Am. 91, 3144 (1992).

    Article  ADS  Google Scholar 

  6. M. D. Cahill and A. C. Baker, J. Acoust. Soc. Am. 104, 1274 (1998).

    Article  ADS  Google Scholar 

  7. A. Bouakaz, C. T. Lancee, and N. de Jong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 730 (2003).

    Article  Google Scholar 

  8. M. A. Averkiou, in Proceedings of the 2000 IEEE Ultrasonic Symposium, San Juan, Puerto Rico, 2000, Vol. 1, pp. 1563–1572.

    Google Scholar 

  9. V. A. Khokhlova, A. E. Ponomarev, M. A. Averkiou, and L. A. Crum, J. Acoust. Soc. Am. 112, 2370 (2002).

    ADS  Google Scholar 

  10. A. E. Ponomaryov, V. A. Khokhlova, M. A. Averkiou, and L. A. Crum, in Proceedings of the 3rd International Symposium on Therapeutic Ultrasound, France, Lyon, 2003, Ed. by J.-Y. Chapelon and C. P. Lafon, pp. 309–315.

  11. X. Yang and R. Cleveland, J. Acoust. Soc. Am. 117, 113 (2005).

    Article  MATH  ADS  Google Scholar 

  12. L. V. Osipov, Ultrasonic Diagnostic Instruments: User Manual (Vidar, Moscow, 1999) [in Russian].

    Google Scholar 

  13. S. S. Kashcheeva, V. A. Khokhlova, O. A. Sapozhnikov, et al., Akust. Zh. 46, 211 (2000) [Acoust. Phys. 46, 170 (2000)].

    Google Scholar 

  14. E. A. Filonenko and V. A. Khokhlova, Akust. Zh. 47, 541 (2001) [Coust. Phys. 47, 468 (2001)].

    Google Scholar 

  15. Physical Principles of Medical Ultrasonics, Ed. by C. R. Hill, J. C. Bamber, and G. R. ter Haar (Ellis Horwood, Chichester, 1986; Mir, Moscow, 1989).

    Google Scholar 

  16. A. G. Kudryavtsev and O. A. Sapozhnikov, Akust. Zh. 44, 808 (1998) [Acoust. Phys. 44, 704 (1998)].

    Google Scholar 

  17. I. R. S. Makin, M. A. Averkiou, and M. F. Hamilton, J. Acoust. Soc. Am. 108, 1505 (2000).

    Article  ADS  Google Scholar 

  18. S. K. Godunov and V. S. Ryaben’kiĭ, Difference Schemes (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge Univ. Press, New York, 1992).

    Google Scholar 

  20. D. Hope Simpson, C. T. Chin, and P. N. Burns, IEEE Trans. Ultrason. Ferroelect. Freq. Control 46, 372 (1999).

    Article  Google Scholar 

  21. G. A. Brock-Fisher, Mc. D. Poland, and P. G. Rafter, US Patent No. 5577505 (1996).

  22. G. A. Brock-Fisher, Mc. D. Poland, P. G. Rafter, and M. G. Mooney, in Proceedings of the 5th Heart Centre European Symposium on Ultrasound Contrast Imaging, Rotterdam, the Netherlands, 2000.

  23. R. E. Apfel and C. K. Holland, Ultrasound Med. Biol. 17(2), 179 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Akusticheskiĭ Zhurnal, 2006, Vol. 52, No. 4, pp. 560–570.

This article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khokhlova, V.A., Ponomarev, A.E., Averkiou, M.A. et al. Nonlinear pulsed ultrasound beams radiated by rectangular focused diagnostic transducers. Acoust. Phys. 52, 481–489 (2006). https://doi.org/10.1134/S1063771006040178

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771006040178

PACS numbers

Navigation