Skip to main content
Log in

Quantum Control by the Environment: Turing Uncomputability, Optimization over Stiefel Manifolds, Reachable Sets, and Incoherent GRAPE

  • QUANTUM INFORMATICS: COMPUTING
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The ability to control quantum systems is necessary for many applications of quantum technologies ranging from gate generation in quantum computation to NMR and laser control of chemical reactions. In many practical situations, the controlled quantum systems are open, i.e., interacting with the environment. While often influence of the environment is considered as an obstacle for controlling the systems, in some cases it can be exploited as a useful resource. In this note, we briefly review some results on control of open quantum systems using environment as a resource, including Turing uncomputability of discrete quantum control, parametrization of Kraus maps by points of the Stiefel manifolds and corresponding Riemanninan optimization, control by dissipation and time-dependent decoherence rates, reachable sets, and incoherent GRAPE (Gradient Ascent Pulse Engineering) for gradient-based optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Sometimes not-completely positive dynamics is also considered [13, 14], but here we do not consider this case.

REFERENCES

  1. Rice, S.A. and Zhao, M., Optical Control of Molecular Dynamics, Wiley, 2000.

    Google Scholar 

  2. Tannor, D., Introduction to Quantum Mechanics: A Time-Dependent Perspective, University Science Books, 2007.

    Google Scholar 

  3. Shapiro, M. and Brumer, P., Quantum Control of Molecular Processes, Weinheim, Germany: Wiley, 2011. https://doi.org/10.1002/9783527639700

    Book  Google Scholar 

  4. Schleich, W.P., Ranade, K.S., Anton, C., Arndt, M., Aspelmeyer, M., Bayer, M., Berg, G., Calarco, T., Fuchs, H., Giacobino, E., Grassl, M., Hänggi, P., Heckl, W.M., Hertel, I., Huelga, S., Jelezko, F., Keimer, B., Kotthaus, J.P., Leuchs, G., Lütkenhaus, N., Maurer, U., Pfau, T., Plenio, M.B., Rasel, E.M., Renn, O., Silberhorn, C., Schiedmayer, J., Schmitt-Landsiedel, D., Schönhammer, K., Ustinov, A., Walther, P., Weinfurter, H., Welzl, E., Wiesendanger, R., Wolf, S., Zeilinger, A., and Zoller, P., Quantum technology: From research to application, Appl. Phys. B, 2016, vol. 122, no. 5, p. 130. https://doi.org/10.1007/s00340-016-6353-8

    Article  Google Scholar 

  5. Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., Esteve, D., Gisin, N., Glaser, S.J., Jelezko, F., Kuhr, S., Lewenstein, M., Riedel, M.F., Schmidt, P.O., Thew, R., Wallraff, A., Walmsley, I., and Wilhelm, F.K., The quantum technologies roadmap: A European community view, New J. Phys., 2018, vol. 20, no. 8, p. 080201. https://doi.org/10.1088/1367-2630/aad1ea

    Article  Google Scholar 

  6. Koch, C.P., Boscain, U., Calarco, T., Dirr, G., Filipp, S., Glaser, S.J., Kosloff, R., Montangero, S., Schulte-Herbrüggen, T., Sugny, D., and Wilhelm, F.K., Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe, EPJ Quantum Technol., 2022, vol. 9, no. 1, p. 19. https://doi.org/10.1140/epjqt/s40507-022-00138-x

    Article  Google Scholar 

  7. Mancini, S., Man’ko, V.I., and Wiseman, H.M., Special issue on quantum control, J. Opt. B: Quantum Semiclassical Opt., 2005, vol. 7, no. 10, pp. S177–S177. https://doi.org/10.1088/1464-4266/7/10/e01

    Article  Google Scholar 

  8. Gough, J.E., Principles and applications of quantum control engineering, Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 1979, vol. 370, no. 1979, pp. 5241–5258. https://doi.org/10.1098/rsta.2012.0370

  9. Pechen, A. and Rabitz, H., Teaching the environment to control quantum systems, Phys. Rev. A, 2006, vol. 73, no. 6, p. 062102. https://doi.org/10.1103/PhysRevA.73.062102

    Article  Google Scholar 

  10. Pechen, A., Engineering arbitrary pure and mixed quantum states, Phys. Rev. A, 2011, vol. 84, no. 4, p. 042106. https://doi.org/10.1103/physreva.84.042106

    Article  Google Scholar 

  11. Davies, E.B., Quantum Theory of Open Systems, Academic, 1976.

    Google Scholar 

  12. Accardi, L., Volovich, I., and Lu, Yu.G., Quantum Theory and Its Stochastic Limit, Berlin: Springer, 2002. https://doi.org/10.1007/978-3-662-04929-7

    Book  Google Scholar 

  13. Pechukas, P., Reduced dynamics need not be completely positive, Phys. Rev. Lett., 1994, vol. 73, no. 8, pp. 1060–1062. https://doi.org/10.1103/physrevlett.73.1060

    Article  MathSciNet  Google Scholar 

  14. Shaji, A. and Sudarshan, E.C.G., Who’s afraid of not completely positive maps?, Phys. Lett. A, 2005, vol. 341, nos. 1–4, pp. 48–54. https://doi.org/10.1016/j.physleta.2005.04.029

    Article  MathSciNet  Google Scholar 

  15. Noce, C. and Romano, A., Undecidability and quantum mechanics, Encyclopedia, 2022, vol. 2, no. 3, pp. 1517–1527. https://doi.org/10.3390/encyclopedia2030103

    Article  Google Scholar 

  16. Bondar, D.I. and Pechen, A.N., Uncomputability and complexity of quantum control, Sci. Rep., 2020, vol. 10, no. 1, p. 1195. https://doi.org/10.1038/s41598-019-56804-1

    Article  Google Scholar 

  17. Matiyasevich, Yu.V., Hilbert’s tenth problem: What was done and what is to be done, Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry, Denef, J., Lishitz, L., Pheidas, T., and Van Geel, J., Eds., Contemporary Mathematics, vol. 270, Cambridge, Mass.: American Mathematical Society, 1993. https://doi.org/10.1090/conm/270

    Book  Google Scholar 

  18. Edelman, A., Arias, T.A., and Smith, S.T., The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 1998, vol. 20, no. 2, pp. 303–353. https://doi.org/10.1137/s0895479895290954

    Article  MathSciNet  Google Scholar 

  19. Pechen, A., Prokhorenko, D., Wu, R., and Rabitz, H., Control landscapes for two-level open quantum systems, J. Phys. A: Math. Theor., 2008, vol. 41, no. 4, p. 045205. https://doi.org/10.1088/1751-8113/41/4/045205

    Article  MathSciNet  Google Scholar 

  20. Oza, A., Pechen, A., Dominy, J., Beltrani, V., Moore, K., and Rabitz, H., Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution, J. Phys. A: Math. Theor., 2009, vol. 42, no. 20, p. 205305. https://doi.org/10.1088/1751-8113/42/20/205305

    Article  MathSciNet  Google Scholar 

  21. Pechen, R., Wu, A., Rabitz, H., Hsieh, M., and Tsou, B., Control landscapes for observable preparation with open quantum systems, J. Math. Phys., 2008, vol. 49, no. 2, p. 022108. https://doi.org/10.1063/1.2883738

    Article  MathSciNet  Google Scholar 

  22. Schirmer, S.G., Fu, H., and Solomon, A.I., Complete controllability of quantum systems, Phys. Rev. A, 2001, vol. 63, no. 6, p. 063410. https://doi.org/10.1103/physreva.63.063410

    Article  Google Scholar 

  23. Turinici, G. and Rabitz, H., Quantum wavefunction controllability, Chem. Phys., 2001, vol. 267, nos. 1–3, pp. 1–9. https://doi.org/10.1016/s0301-0104(01)00216-6

    Article  Google Scholar 

  24. Polack, T., Suchowski, H., and Tannor, D.J., Uncontrollable quantum systems: A classification scheme based on Lie subalgebras, Phys. Rev. A, 2009, vol. 79, no. 5, p. 053403. https://doi.org/10.1103/physreva.79.053403

    Article  Google Scholar 

  25. Lokutsievskiy, L. and Pechen, A., Reachable sets for two-level open quantum systems driven by coherent and incoherent controls, J. Phys. A: Math. Theor., 2021, vol. 54, no. 39, p. 395304. https://doi.org/10.1088/1751-8121/ac19f8

    Article  MathSciNet  Google Scholar 

  26. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., and Glaser, S.J., Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Reson., 2005, vol. 172, no. 2, pp. 296–305. https://doi.org/10.1016/j.jmr.2004.11.004

    Article  Google Scholar 

  27. Petruhanov, V.N. and Pechen, A.N., GRAPE optimization for open quantum systems with time-dependent decoherence rates driven by coherent and incoherent controls, J. Phys. A: Math. Theor., 2023, vol. 56, no. 30, p. 305303. https://doi.org/10.1088/1751-8121/ace13f

    Article  MathSciNet  Google Scholar 

  28. Petruhanov, V.N. and Pechen, A.N., Quantum control landscapes for generation of H and T gates in an open qubit with both coherent and environmental drive, Photonics, 2023, vol. 10, no. 11, p. 1200. https://doi.org/10.3390/photonics10111200

    Article  Google Scholar 

  29. Pechen, A.N., Petruhanov, V.N., Morzhin, O.V., and Volkov, B.O., Control landscapes for high-fidelity generation of C-NOT and C-PHASE gates with coherent and environmental drive, 2023 (in press).

  30. Goerz, M.H., Reich, D.M., and Koch, C.P., Optimal control theory for a unitary operation under dissipative evolution, New J. Phys., 2014, vol. 16, no. 5, p. 055012. https://doi.org/10.1088/1367-2630/16/5/055012

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pechen.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pechen, A.N. Quantum Control by the Environment: Turing Uncomputability, Optimization over Stiefel Manifolds, Reachable Sets, and Incoherent GRAPE. Russ Microelectron 52 (Suppl 1), S419–S423 (2023). https://doi.org/10.1134/S1063739723600826

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600826

Keywords:

Navigation