Skip to main content
Log in

Basic Techniques of Increasing Resolution of Photopolymerizable Compositions

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Photopolymerizing liquid compositions via a radical mechanism and enabling the formation of products with a thickness ranging from ten to several hundred micrometers and the linear dimensions of elements of several micrometers are considered. They are mixtures of organic oligomers and monomers, and the correlation time of the rotational motion of a paramagnetic probe (2,2,6,6-tetramethyl-4-oxypiperidine-1-oxyl) in them is (4–6) × 10–10 s. Only photopolymerizable compositions (PPCs) with such a correlation time can simultaneously provide the highest values of the photopolymerization rate, light sensitivity, and photolithography resolution. Their core components consist of a photoinitiator generating free radicals through Norrish type I reaction and a highly efficient inhibitor of radical polymerization. An ultimately high resolution of optical lithography can be achieved by using PPCs in which polymerization proceeds via a terminationless mechanism, no increase in light scattering is observed upon exposure, and in which a polymerization inhibiting system is present, but with limitations placed on the diffusion of the inhibitor. Systems in which polymerization proceeds via a microheterogeneous mechanism are not suitable for this purpose. The possibility of creating such PPCs arises from the phenomena of stopping chemical reactions and leveling reactive capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varadan, V.K. Vinoy, K.J., and Jose, K.A., RF MEMS and Their Applications, Chichester: Wiley, 2002.

    Book  Google Scholar 

  2. Wu, H., Odom, T.W., Chiu, D.T., and Whitesides, G.M., J. Am. Chem. Soc., 2003, vol. 125, no. 2, pp. 554–559.

    Article  Google Scholar 

  3. Wu, H., Reed, H.A., Wang, Y., Rhodes, L.F., Elce, E., Ravikiran, R., Shick, R.A., Henderson, C.L., Allen, S.A.B., Kohl, P.A., et al., J. Electrochem. Soc., 2003, vol. 150, no. 9, pp. 205–213.

    Article  Google Scholar 

  4. Biosovmestimye materialy (Biocompatible Materials), Sevast’yanov, V.I. and Kirpichnikov, M.P., Ed., Moscow: Med. Inform. Agentstvo, 2011.

  5. Treushnikov, V.M. and Viktorova, E.A., Sovrem. Tekhnol. Med., 2015, vol. 7, no. 3, pp. 149–171.

    Article  Google Scholar 

  6. Castignoles, F., Flury, M., and Lepine, T., Opt. Express, 2010, vol. 18, no. 5, pp. 5245–5256.

    Article  Google Scholar 

  7. Yunos, D.M., Bretcanu, O., and Boccaccini, A., J. Mater. Sci., 2008, vol. 43, no. 13, pp. 4433–4442.

    Article  Google Scholar 

  8. Hariraksapitak, P. and Supaphol, P., J. Appl. Polym. Sci., 2010, vol. 117, no. 6, pp. 3406–3418.

    Google Scholar 

  9. Korzhikov, V.A., Vlakh, E.G., and Tennikova, T.B., Polym. Sci., Ser. A, 2012, vol. 54, no. 8, pp. 1203–1221.

    Article  Google Scholar 

  10. Akhmanov, A.S., Nanii, O.E., and Panchenko, V.Ya., Tekhnol. Budushch., 2008, no. 3, pp. 46–53.

    Google Scholar 

  11. Molodnyakov, S.P., Treushnikov, V.V., Treushnikov, V.M., Gorshkov, O.N., Kasatkin, A.P., Shenina, M.E., Shushunov, A.N., Kruglov, A.V., and Semenov, V.V., Russ. J. Appl. Chem., 2014, vol. 87, no. 3, pp. 331–335.

    Article  Google Scholar 

  12. Treushnikov, V.M., Treushnikov, V.V., and Pavlov, G.A., RF Patent no. 2470272, 2012.

  13. Treushnikov, V.M. and Oleinik, A.V., Zh. Nauch. Prikl. Fotogr. Kinematogr., 1991, vol. 35, no. 3, pp. 189–197.

    Google Scholar 

  14. Tsao, C., Chen, T., Woon, W.Y., and Lo, C., Microsyst. Technol., 2012, vol. 18, no. 6, pp. 713–722.

    Article  Google Scholar 

  15. Vasserman, A.M. and Kovarskii, A.L., Spinovye metki i zondy v fiziko-khimii polimerov (Spin Labels and Probes in Polymer Physicochemistry), Moscow: Nauka, 1986.

    Google Scholar 

  16. Treushnikov, V.M., Zueva, T.A., Esin, S.A., and Oleinik, A.V., Zh. Nauch. Prikl. Fotogr. Kinematogr., 1990, vol. 34, no. 3, pp. 167–173.

    Google Scholar 

  17. Treushnikov, V.M., Esin, S.A., Zueva, T.A., Semchikov, Y.D., Knjazeva, T.E., Yanin, A.M., and Semenova, O.M., Polym. Sci., Ser A, 1995, vol. 37, no. 12, pp. 167–175.

    Google Scholar 

  18. Fedorov, S.N., Linnik, L.F., and Treushnikov, V.M., USA Patent nos. 5725576, 5833890, 1998.

  19. Treushnikov, V.M. and Viktorova, E.A., RF Patent nos. 2198630, 2234447, 2000.

  20. Berlin, A.A., Korolev, G.V., Kefeli, T.Ya., and Severgin, Ya.M., Akrilovye oligomery i materialy na ikh osnove (Acrylic Oligomers and Materials on Their Base), Moscow: Khimiya, 1983.

    Google Scholar 

  21. Esin, S.A., Treushnikov, V.M., Zueva, T.A., and Oleinik, A.V., Zh. Nauch. Prikl. Fotogr. Kinematogr., 1989, vol. 34, no. 6, pp. 450–457.

    Google Scholar 

  22. Barltrop, J.A. and Coyle, J.D., Excited States in Organic Chemistry, Chichester: Wiley, 1975.

    Google Scholar 

  23. Semchikov, Yu.D., Vysokomolekulyarnye soedineniya (High Polymers), Moscow: Akademiya, 2008.

    Google Scholar 

  24. Chesnokov, S.A., Treushnikov, V.M., Chechet, Yu.V., Cherkasov, V.K., and Mamysheva, O.N., Polymer Sci., Ser. A, 2008, vol. 50, no. 3, pp. 291–298.

    Article  Google Scholar 

  25. Treushnikov, V.M. and Chesnokov, S.A., J. Photochem. Photobiol., A, 2008, vol. 196, nos. 2–3, pp. 201–209.

    Article  Google Scholar 

  26. Shlyapintokh, E.G., Fotokhimicheskie prevrashcheniya i stabilizatsiya polimerov (Photochemical Transformations and Polymer Stabilization), Moscow: Khimiya, 1979.

    Google Scholar 

  27. Emanuel’, N.M. and Buchachenko, A.P., Khimicheskaya fizika molekulyarnogo razrusheniya i stabilizatsii polimerov (Chemical Physics of Molecular Fracture and Stabilization of Polymers), Moscow: Nauka, 1988.

    Google Scholar 

  28. Pavlov, G., Snigireva, I., Snigirev, A., Sagdulli, T., and Schmidt, M., Tech. Phys. Lett., 2012, vol. 38, no. 5, pp. 251–253.

    Article  Google Scholar 

  29. Pavlov, G., Snigireva, I., Snigirev, A., Sagdullin, T., and Schmid, M., X-ray Spectrom., 2012, vol. 41, no. 5, pp. 313–315.

    Article  Google Scholar 

  30. Garanin, R.V., Pavlov, G.A., Suslov, N.A., Treushnikov, V.M., Treushnikov, V.V., and Zhidkov, N.V., J. Instrum., 2015, vol. 10, no. 4, p. 04011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Semenov.

Additional information

Original Russian Text © V.M. Treushnikov, S.P. Molodnyakov, V.V. Semenov, 2018, published in Mikroelektronika, 2018, Vol. 47, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treushnikov, V.M., Molodnyakov, S.P. & Semenov, V.V. Basic Techniques of Increasing Resolution of Photopolymerizable Compositions. Russ Microelectron 47, 50–64 (2018). https://doi.org/10.1134/S1063739718010079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739718010079

Navigation