Skip to main content
Log in

Effect of polymer matrix and photoacid generator on the lithographic properties of chemically amplified photoresist

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Resistive compositions based on ter-copolymers of isobornylacrylate with methylmethacrylate and (meth)acrylic acid, which are synthesized using the controlled radical polymerization with reversible chain transfer, as well as triphenylsulphoniumtriflate as a photo-sensitive catalyst are studied. The effect of the chain-transfer agent, as well as the composition and molecular weight of the copolymer on the sensitivity of the resists to UV radiation (222 nm), is determined. Using the ter-copolymer of tert-butoxycarbonyloxystyrene with methylmethacrylate and methacrylic acid, the dependence of the lithographic properties of the photoresist on the chemical composition of the photoacid generator is analyzed. The plasma-chemical stability of (co)polymer resists of methacrylic series in the plasma of Ar + SF6 is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ito, H., Willson, C.G., and Fréchet, M.J., Digest of Technical Papers of 1982 Symposium on VLSI Technology, 1982, pp. 86–87.

    Google Scholar 

  2. Ito, H. and Willson, C.G., Polym. Eng. Sci., 1983, vol. 23, no. 18, pp. 1012–1018.

    Article  Google Scholar 

  3. Chernikova, E.V., Terpugova, P.S., Garina, E.S., and Golubev, V.B., Vysokomolek. Soed., Ser. A, 2007, vol. 49, no. 2, p. 208.

    Google Scholar 

  4. Chong, Y.K., Moad, G., Rizzardo, E., and Thang, T.H., Macromolecules, 2007, vol. 40, no. 13, pp. 4446–4455.

    Article  Google Scholar 

  5. Bulgakova, S.A., Ivanov, I.P., Lopatin, A.Ya., and Mazanova, L.M., Poverkhnost’. Rentgen., sinkhrotr. i neitron. issled., 2008, no. 6, pp. 90–94.

    Google Scholar 

  6. Weissberger, A., Proskauer, E., Riddick, J., and Toops, E., Organic Solvents. Physical Properties and Methods of Purification, New York: Interscience, 1955.

    Google Scholar 

  7. Bobranskii, B., Kolichestvennyi analiz organicheskikh soedinenii (Quantitative Analysis of Organic Compound), Moscow: Goskhimizdat, 1961.

    Google Scholar 

  8. Balandina, V.A., Gurvich, D.B., Kleshcheva, M.S., et al., Analiz polimerizatsionnykh plastmass (Analysis of Polymerization Plastics), Moscow: Khimiya, 1965.

    Google Scholar 

  9. Braun, D., Sherdron, G., and Kern, V., Prakticheskoe rukovodstvo po sintezu i issledovaniyu svoistv polimerov (Practical Guide to Synthesis and Study of Properties of Polymers), Moscow: Khimiya, 1976.

    Google Scholar 

  10. Bulgakova, S.A., Jones, M.M., Pestov, A.E., Toropov, M.N., Chkhalo, N.I., Gusev, S.A., Skorokhodov, E.V., and Salashchenko, N.N., Mikroelektronika, 2013, vol. 42, no. 3, pp. 206–213.

    Google Scholar 

  11. Beklemyshev, V.I., Makhonin, I.I., Afanas’ev, M.M., Bulgakova, S.A., Jones, M.M., Igumnova, E.V., Igumnov, S.M., and Tyutyunov, A.A., RF Patent no. 2012122889, 2013.

  12. Ito, H., England, W.P., and Lundmark, S.B., Proc. SPIE-Int. Soc. Opt. Eng., 1992, vol. 1672, pp. 2–14.

    Google Scholar 

  13. Momose, H., Wakabayashi, S., Fujiwara, T., Ichimura, K., and Nakauchi, J., Proc. SPIE-Int. Soc. Opt. Eng., 2001, vol. 4345, pp. 695–702.

    Google Scholar 

  14. Olah, G.A., Prakash, G.K.S., Wang, Q., and Li, X., Hydrogen fluoride-antimony (V) fluoride in Encyclopedia of Reagents for Organic Synthesis, New York: J. Wiley & Sons, 2004.

    Google Scholar 

  15. Bednarzh, B., El’tsov, A.V., Zakhoval, Ya., Kralichek, Ya., and Yurre, T.A., Svetochuvstvitel’nye polimernye materialy. Sovmestnoe izdanie SSSR i ChSSR (Light-Sensitive Polymer Materials. Joint publication of USSR and ChSSR), Leningrad: Khimiya, 1985.

    Google Scholar 

  16. Schuster, M., Ise, M., Fuchs, A., Kreuer, K.D., and Maier, J., Proton and Water Transport in Nano-Separated Polymer Membranes, Germany: Max-Planck-Institut für Festkörperforschung, 2005.

    Google Scholar 

  17. Kozawa, T., Yoshida, Y., Uesaka, M., and Tagawa, S., Jpn. J. Appl. Phys., 1992, vol. 31, pt 1, no. 12B, pp. 4301–4306.

    Article  Google Scholar 

  18. Hirose, R., Kozawa, T., Tagaway, S., Kai, T., and Shimokawa, T., Jpn. Soc. Appl. Phys.: Appl. Phys. Express, 2008, vol. 1, pp. 027004-1–027004-3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Bulgakova.

Additional information

Original Russian Text © S.A. Bulgakova, D.A. Gurova, S.D. Zaitsev, E.E. Kulikov, E.V. Skorokhodov, M.N. Toropov, A.E. Pestov, N.I. Chkhalo, N.N. Salashchenko, 2014, published in Mikroelektronika, 2014, Vol. 43, No. 6, pp. 419–428.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulgakova, S.A., Gurova, D.A., Zaitsev, S.D. et al. Effect of polymer matrix and photoacid generator on the lithographic properties of chemically amplified photoresist. Russ Microelectron 43, 392–400 (2014). https://doi.org/10.1134/S1063739714050023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739714050023

Keywords

Navigation