Skip to main content
Log in

Modeling of recombination in SiO2 under the effect of ionizing radiation by the Monte Carlo method

  • Influence of Dose Factors on the Resistance of Microelectronic Devices
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A method to calculate the yield of the primary recombination of electrons and holes in SiO2 is suggested. The boundedness of the approach for the description of the transfer and recombination in SiO2 based on the solution of the Smoluchowski equation and capture model not taking into account the structure of deep levels of the center is shown. The experimental and theoretical values of the recombination yield agree in a wide range of values of the field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ionizing Radiation Effects in MOS Devices and Circuits, Ma, T.P. and Dressendorfer, P.V., eds., New York: Wiley & Sons, 1989.

    Google Scholar 

  2. Que, W. and Rowlands, J.A., X-Ray Photogeneration in Amorphous Selenium: Geminate Versus Columnar Recombination, Phys. Rev. B:, 1995, vol. 51, pp. 10500–10507.

    Article  Google Scholar 

  3. Murat, M., Akkerman, A., and Barak, J., Spatial Distribution of Electron-Hole Pairs Induced by Electrons and Protons in SiO2, IEEE Trans. Nucl. Sci., 2004, vol. 51, pp. 3211–3218.

    Article  Google Scholar 

  4. Murat, M., Akkerman, A., and Barak, J., Charge Yield and Related Phenomena Induced by Ionizing Radiation in SiO2 Layers, 8th European Conf. on Radiation and Its Effects on Components and Systems, Cap d’Agde: RADECS, 2005.

    Google Scholar 

  5. Pines, D., in Elementary Excitations in Solids, New York: Benjamin, 1963, Chap. 4.

    Google Scholar 

  6. Ashley, J.C. and Anderson, V.E., Energy Losses and Mean Free Paths of Electrons in Silicon Dioxide, IEEE Trans. Nucl. Sci., 1981, vol. 28, pp. 4132–4136.

    Article  Google Scholar 

  7. Fernarndez-Varea, J. M., Salvat, F., Dingfelder, M., and Liljequist, D., A Relativistic Optical-Data Model for Inelastic Scattering of Electrons and Positrons in Condensed Matter, Nucl. Instrum. Methods Phys. Res., Sect. B, 2005, vol. 229, pp. 187–218.

    Article  Google Scholar 

  8. Fitting, H.-J., Schreiber, E., Kuhr, J.-Ch., and Von Czarnowski, A., Attenuation and Escape Depths of Low Energy Electron Emission, J. Electron. Spectrosc. Rel. Phenom, 2001, vol. 119, pp. 35–47.

    Article  Google Scholar 

  9. Hubbell, J.H. and Seltzer, S.M., Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients, Gaithersburg: National Institute of Standards and Technology, 2004.

    Google Scholar 

  10. Sauter, F., Über den atomaren Photoeffekt in der K-Schale nach der relativistischen Wellenmechanik Diracs, Ann. Physik, 1931, vol. 11, pp. 454–488.

    Article  MATH  Google Scholar 

  11. Jablonski, A. and Powell, C.J., NIST Standard Reference Database 64, version 2, 2000 (srdata@nist.gov).

  12. Bradford, J.N. and Woolf, S., Electron-Acoustic Phonon Scattering in SiO2 Determined from a Pseudo-Potential for Energies of E > EBZ, J. Appl. Phys., 1991, vol. 70, pp. 490–493.

    Article  Google Scholar 

  13. Llacer, J. and Garwin, E.L., Electron-Phonon Interaction in Alkali Halides. I. The Transport of Secondary Electrons with Energies Between 0.25 and 7.5 eV, J. Appl. Phys., 1969, vol. 40, pp. 2766–2775.

    Article  Google Scholar 

  14. Hughes, R., Charge-Carrier Transport Phenomena in Amorphous SiO2: Direct Measurement of the Drift Mobility and Lifetime, Phys. Rev. Lett., 1973, vol. 30, p. 1333.

    Article  Google Scholar 

  15. Fischetti, M.V., DiMaria, D.J., Brorson, S.D., and Theis, T.N., and Kirtley, J.R., Theory of High-Field Electron Transport in Silicon Dioxide, Phys. Rev., 1985, vol. 31.

  16. Gnani, E., Reggiani, S., and Rudan, M., Density of States and Group Velocity of Electrons in SiO2 Calculated from a Full Band Structure, Phys. Rev. B., vol. 66, p. 195205.

  17. Lachaine, M. and Fallone, B.G., Monte Carlo Simulations of X-Ray Induced Recombination in Amorphous Selenium, J. Phys. D: Appl. Phys, 2000, vol. 33, pp. 1417–1423.

    Article  Google Scholar 

  18. Buchanan, D.A. et al., Coulombic and Neutral Trapping Centers in Silicon Dioxide, Phys. Rev. B:, 1991, vol. 43, no. 2, p. 1471.

    Article  Google Scholar 

  19. Ning, T.H., High-Field Capture of Electrons by Coulomb-Attractive Centers in Silicon Dioxide, J. Appl. Phys., 1976, vol. 47, no. 7, p. 3203.

    Article  Google Scholar 

  20. Lax, M., Cascade Capture of Electrons in Solids, Phys. Rev., 1960, vol. 119, no. 3, p. 1502.

    Article  Google Scholar 

  21. Verlet, L., Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev., 1967, vol. 159, p. 98.

    Article  Google Scholar 

  22. Brown, D.B. and Dozier, C.M., Electron-Hole Recombination in Irradiated SiO2 from a Microdosimetry View-point, IEEE Trans. Nucl. Sci, 1981, vol. 28, pp. 4142–4144.

    Article  Google Scholar 

  23. Oldham, T.R. and McGarrity, J.R., Comparison of 60Co Response and 10 KeV Response in MOS Capacitors, IEEE Trans. Nucl. Sci., 1983, vol. 30, pp. 4377–4381.

    Article  Google Scholar 

  24. Shaneyfelt, M.R., Fleetwood, D.M., Schwank, J.R., and Hughes, K.L., Charge Yield for Co-60 and 10-KeV X-Ray Irradiations of MOS Devices, IEEE Trans. Nucl. Sci., 1991, vol. 38, pp. 1187–1194.

    Article  Google Scholar 

  25. Fleetwood, D.M., Winokur, P.S., Beegle, R.W., Dressendorfer, P.V., and Draper, B.L., Accounting for Dose Enhancement Effects with CMOS Transistors, IEEE Trans. Nucl. Sci., 1985, vol. 32, p. 4369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sogoyan.

Additional information

Original Russian Text © V.A. Polunin, A.V. Sogoyan, 2011, published in Mikroelektronika, 2011, vol. 40, No. 3, pp. 191–199

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polunin, V.A., Sogoyan, A.V. Modeling of recombination in SiO2 under the effect of ionizing radiation by the Monte Carlo method. Russ Microelectron 40, 176–184 (2011). https://doi.org/10.1134/S1063739711030061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739711030061

Keywords

Navigation