Skip to main content
Log in

The use of stressed silicon in MOS transistors and CMOS structures

  • Physics and Technology of MOS Transistors and CMOS Structures
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

In the review, the changes in electronic processes in the channel of the MOS transistor taking place under applying mechanical stresses are described. It is shown that the use of the stressed films of silicon nitride, the source and sink from the germanium-silicon alloy, etc., leads to an increase in the mobility of holes and electrons and to an increase in the efficiency of transistor operation. The application of this method to CMOS structures is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krasnikov, G.Ya., Konstructivno-tekhnologicheskie osobennosti submikronnykh MOP-transistors (Constructive and Technological Features of Submicron MOS Transistors), Moscow: Tekhnosfera, Part 1 2002, Part 2 2004.

    Google Scholar 

  2. Orlikovskii, A.A., Silicon Transistor Nanoelectronics, Izv. Vyssh. Uchebn. Zaved., Elektronika, 2006, no. 5, pp. 35–44.

  3. Skotnicki, T. and Monfray, S., Materials and MOS Device Architectures for Sub-32 nm CMOS Nodes, Proc. Int. Conf. on Micro- and Nanoelectronics — 2007 (ICMNE-2007), Moscow-Zvenigorod, 2007, p. L1–01.

  4. Gridchin, V.A. and Dragunov, V.P., Fizika mikrosistem (Physics of Microsystems), Part 1, Novosibirsk: NGTU, 2004.

    Google Scholar 

  5. Smith, C.S., Piezoresistance Effect in Germanium and Silicon, Phys. Rev., vol. 94, no. 1, p. 4249.

  6. Aleinikov, A.F., Gridchin, V.A., and Tsapenko, M.P., Datchiki (Sensors), Novosibirsk: NGTU, 2003.

    Google Scholar 

  7. Taskin, A.A., Gridchin, V.A., Cherepov, E.I., et al., Pressure Sensors of the Membrane Type for the Investigation of Aerodynamic Flows, Nauka-Proizvodstvu, 2001, no. 12 (50), pp. 26–30.

  8. Baranskii, P.I., Klochkov, V.P., and Potykevich, I.V., Poluprovodnikovaya elektronika. Spravochnik (Semiconductor Electronics. Handbook), Kiev: Naukova Dumka, 1975.

    Google Scholar 

  9. Arghani, R. et al., Abstracts of Papers, Int. Seminar on Strain Engineering in Non-Volatile Memories, April 2006, p. 32.

  10. Hensel, J.C. and Feher, G., Cyclotron Resonance Experiments in Uniaxially Stressed Silicon: Valence Band Inverse Mass Parameters and Deformation Potential, Phys. Rev., 1963, vol. 129, no. 3, pp. 1041–1062.

    Article  MATH  Google Scholar 

  11. Manasevit, H.M., Segis, I.S., and Jones, A.B., Electron Mobility Enhancement in Epitaxial Multilayer Si-Si1−x Gex Alloy Films on (100) Si, Appl. Phys. Lett., 1982, vol. 41, no. 5, pp. 464–466.

    Article  Google Scholar 

  12. People, R. et al., Modification Doping in GexSi1−x /Si Strained Layer Heterostructures, Appl. Phys. Lett., 1984, vol. 45, no. 11, pp. 1231–1233.

    Article  Google Scholar 

  13. Rim, K. et al., Abstracts of Papers, VLSI Symp., June 2002, pp. 98–99.

  14. Wang, H.C. et al., Proc. IEDM Tech. Dig., Dec. 2002, pp. 61–64.

  15. Lee, B.H. et al., Proc. IEDM Tech. Dig., Dec. 2003, pp. 946–948.

  16. Rim, K. et al., Fabrication and Mobility Characteristics of Ultra Thin Strained-Si Directly on Insulator (SSDOI) MOSFETs, Proc. IEDM Tech. Dig., Dec. 2003, pp. 49–52.

  17. Semenova, O. et al., Poverkhnost, 1992, issue 9–11.

  18. Ito, S. et al., Mechanical Stress Effect of Etch-Stop Nitride and Its Impact on Deep Submicron Transistor Design, Proc. IEDM Tech. Dig., Dec. 2000.

  19. Yang, Y.S. et al., Proc. IEDM Tech. Dig., Dec. 2004, pp. 1075–1078.

  20. Shimitzu, A. et al., Local Mechanical-Stress Control (LMC): A New Technique for CMOS-Performance Enhancement, Proc. IEDM Tech. Dig., Dec. 2003.

  21. Ota, K. et al., Novel Locally Strained Technique for Performance 55 nm CMOS, Proc. IEDM Tech. Dig., Dec. 2002, pp. 27–30.

  22. Chen, C.H. et al., Abstracts of Papers, VLSI Symp., June 2004, pp. 56–57.

  23. Khamankar, R. et al., Abstracts of Papers, VLSI Symp., June 2004, pp. 162–163.

  24. Ghani, T. et al., A 90 nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistor, Proc. IEDM Tech. Dig., Dec. 2003, pp. 978–980.

  25. Mistry, K. et al., Abstracts of Papers, VLSI Symp., June 2004, pp. 50–51.

  26. Bai et al., Proc. IEDM Tech. Dig., Dec. 2004, pp. 657–660.

  27. Sato et al., Phys. Rev. B: Condens. Matter, 1971, vol. 4, pp. 1950–1960.

    Google Scholar 

  28. Chan, V. et al., Strain for CMOS Performance Improvement, Proc. IEEE 2005 Custom Integrated Circuits Conf., 2005.

  29. Yang, M. et al., High Performance CMOS Fabricated on Hybrid Substrate with Different Crystal Orientations, Proc. IEDM Tech. Dig., Dec. 2003, pp. 453–456.

  30. Yang, M. et al., Abstracts of Papers, VLSI Symp., June 2004, pp. 160–161.

  31. Chang, L. et al., CMOS Circuit Performance Enhancement by Surface Orientation Optimization, Trans. Elec. Dev., 2004, vol. 51, pp. 1621–1627.

    Article  Google Scholar 

  32. Washington, L. et al., p-MOSFET with 200% Mobility Enhancement Induced by Multiple Stressors, IEEE Electron Dev. Lett., 2006, vol. 27, no. 6.

  33. Horstmann, M. et al., Integration and Optimization of Embedded-SiGe, Compressive and Tensile Stressed Liner Films, and Stress Memorization in Advanced SOI CMOS Technologies, IEDM Tech. Dig., Dec. 2005, Report 5, Session 10.

  34. Singer, P., No More Technology Nodes in New ITRS, Semic. Intern., Jan. 2006, pp. 13–14.

  35. Peters, L., Roadmapping 2006 to the Post-CMOS Era, Semic. Intern., March 2006, pp. 17–18.

  36. James, D., Strained Silicon to High-k and Metal Gate, Sol. St. Tech., Nov. 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Neizvestnyi.

Additional information

Original Russian Text © I.G. Neizvestnyi, V.A. Gridchin, 2009, published in Mikroelektronika, 2009, Vol. 38, No.2, pp. 83–98.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neizvestnyi, I.G., Gridchin, V.A. The use of stressed silicon in MOS transistors and CMOS structures. Russ Microelectron 38, 71–86 (2009). https://doi.org/10.1134/S1063739709020012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739709020012

PACS

Navigation