Skip to main content
Log in

Cell differentiation during the larval development of the ophiuroid Amphipholis kochii Lütken, 1872 (Echinodermata: Ophiuroidea)

  • Biology of Ontogenesis
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The differentiation of the ectodermal, entodermal, and mesodermal cell lines in developing plutei of the ophiuroid Amphipholis kochii was examined using electron microscopy and the immunochemical staining technique. The ectodermal cells form the pseudostratified epithelium of the ciliary band, the flattened epithelium of the body wall, and the esophageal epithelium. The epithelium of the ciliary band consists of ciliated and mucous cells; at its base is an axonal tract formed of the processes of neurons. The serotoninergic neurons form two lateral ganglia located along the paraoral ciliary band and the posterolateral arms’ ciliary band. The prominent features of the neurons are large size, the presence of a cilium, an electron-light cytoplasm filled with microvesicles with neurotransmitters, and a large nucleus with a predominant euchromatin. The ectoderm cells (except mucous cells) are characterized by the presence of a cilium surrounded by a collar of microvilli and a thin layer of apical extracellular matrix. The entodermal cells form the digestive tract epithelium and differentiate into four cell types: type I and II cells probably function in the nutrient uptake and assimilation; type III cells perhaps secrete digestive enzymes; and myoepithelial cells that constitute the cardiac and pyloric sphincters and the anus. Sclerenchymatous cells, which are the descendants of the primary mesenchyme, form a syncytium around the developing spicules. The biomineralization process is intrasyncytial, the ophioplutei spicules retain the cytoplasmic covering throughout the period of larval development. The secondary mesenchyme gives rise to smooth muscle cells and amebocytes. Muscle cells compose the circumesophageal musculature, the cell processes of each “muscle band” seem to fuse together. At the base of the preoral band are two symmetrically located groups of muscles, viz., the anterior dilators. Amebocytes function in excretion either near the epidermis or are able to penetrate through the epidermis and excrete wastes into the external environment. The mesoderm formed by the enterocoely gives rise to three pairs of coeloms; their cells remain unspecialized during the entire period of larval development. Results of this study are compared with the micro- and neuroanatomy of the larvae of other echinoderms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gliznutsa, L.A. and Dautov, S.Sh., Ultrastructural Peculiarities of the Embryogenesis of the Brittle Star Amphipholis kochii (Lütken, 1872), Russ. J. Mar. Biol., 2005, vol. 31, no. 3, pp. 194–201.

    Article  Google Scholar 

  2. Ivanova-Kazas, O.M., Evolyutsionnaya embriologiya zhivotnykh (Evolutionary Embryology of Animals), Saint Petersburg: Nauka, 1995.

    Google Scholar 

  3. Isaeva, V.V., Kletki v morfogeneze (Cells in Morphogenesis), Moscow: Nauka, 1994.

    Google Scholar 

  4. Kashenko, S.D., Effect of Desalination on Development of Far Eastern Trepang, Russ. J. Mar. Biol., 1992, vol. 18, nos. 3–4, pp. 43–52.

    Google Scholar 

  5. Kryuchkova, G.A., Development of the Brittle Stars Ophiura sarsi and Amphipholis kochii, Biol. Morya, 1988, no. 1, pp. 33–40.

  6. Filimonova, G.F., Funktsional’naya morfologiya pishchevaritel’noi sistemy iglokozhikh (Functional Morphology of the Digestive System of Echinoderms), Leningrad: Nauka, 1979.

    Google Scholar 

  7. Yushin, V.V. and Nezlin, L.P., Ultrastructure of the Ciliary Band of the Echinopluteus—A Planktonic Larva of the Sea Urchin Echinocardium cordatum, Tsitologiya, 1990, vol. 32, no. 5, pp. 469–476.

    Google Scholar 

  8. Yushin, V.V., Bukhartseva, N.V., and Malakhov, V.V., Electron Microscopic Study of Development of the Far Eastern Sea Cucumber Stichopus japonicus from Blastula to Dipleurula, Tsitologiya, 1993, vol. 35, no. 1. pp. 22–29.

    Google Scholar 

  9. Abed, M. and Crawford, B.J., Ultrastructural Aspects of Mouth Formation in the Starfish Pisaster ochraceus, J. Morphol., 1986, vol. 188, pp. 239–250.

    Article  Google Scholar 

  10. Amey, L., Compere, Ph., Dille, J., and Dubois, Ph., Ultrastructure and Cytochemistry of the Early Calcification Site and of Its Mineralization Organic Matrix in Paracentrotus lividus (Echinodermata: Echinoidea), Histochem. Cell Biol., 1998, vol. 110, pp. 285–294.

    Article  Google Scholar 

  11. Beer, A.-J., Moss, C., and Thorndyke, M., Development of Serotonin-like and SALMFamide-like Immunoreactivity in the Nervous System of the Sea Urchin Psammechinus miliaris, Biol. Bull., 2001, vol. 200, pp. 268–280.

    Article  PubMed  CAS  Google Scholar 

  12. Burke, R.D. and Alvarez, C., Development of the Esophageal Muscles in Embryos of the Sea Urchin Strongylocentrotus purpuratus, Cell Tissue Res., 1988, vol. 252, pp. 411–417.

    Article  PubMed  CAS  Google Scholar 

  13. Byrne, M., Ophiuroidea, Microscopic Anatomy of Invertebrates, Harrison, F.W. and Chia, F.S., Eds., New York: Wiley-Liss, 1994, vol. 14, pp. 247–344.

    Google Scholar 

  14. Byrne, M. and Cisternas, P., Development and Distribution of the Peptidergic System in Larval and Adult Patiriella: Comparison of Sea Star Bilateral and Radial Nervous Systems, J. Comp. Neurol., 2002, vol. 451, pp. 101–114.

    Article  PubMed  CAS  Google Scholar 

  15. Byrne, M., Emlet, R., and Cerra, A., Ciliated Band Structure in Planktotrophic and Lecithotrophic Larvae of Heliocidaris Species (Echinodermata: Echinoidea): A Demonstration of Conservation and Change, Acta Zool., 2001, vol. 82, pp. 189–199.

    Google Scholar 

  16. Byrne, M., Nakajima, Y., Chee, F., and Burke, R., Apical Organs in Echinoderm Larvae: Insights into Larval Evolution in the Ambulacraria, Evol. Dev., 2007, vol. 9, no. 5, pp. 432–445.

    Article  PubMed  Google Scholar 

  17. Byrne, M., Sewell, M., Selvakumaraswamy, P., and Prowset, T., The Larval Apical Organ in the Holothuroid Chiridota gigas (Apodida): Inferences on Evolution of the Ambulacrarian Larval Nervous System, Biol. Bull., 2006, vol. 211, pp. 95–100.

    Article  PubMed  Google Scholar 

  18. Cameron, A. and Holland, N., Electron Microscopy of Extracellular Materials During the Development of a Sea Star, Patiria miniata (Echinodermata: Asteroidea), Cell Tissue Res., 1983, vol. 234, pp. 193–200.

    Article  PubMed  CAS  Google Scholar 

  19. Chee, F. and Byrne, M., Development of the Larval Serotonergic Nervous System in the Sea Star Patiriella regularis as Revealed by Confocal Imaging, Biol. Bull., 1999, vol. 197, pp. 123–131.

    Article  Google Scholar 

  20. Chia, F.-S., Scanning Electron Microscopic Observation of the Mesenchyme Cells in the Larvae of the Starfish Pisaster ochraceus, Acta Zool., 1977, vol. 58, pp. 45–51.

    Article  Google Scholar 

  21. Chia, F.-S. and Burke, R.D., Echinoderm Metamorphosis: Fate of Larval Structures, Settlement and Metamorphosis of Marine Invertebrate Larvae, New York: Elsevier, 1978, pp. 219–246.

    Google Scholar 

  22. Chia, F.-S. and Xing, J., Echinoderm Coelomocytes, Zool. Stud., 1996, vol. 35, no. 4, pp. 231–254.

    Google Scholar 

  23. Cisternas, P. and Byrne, M., Peptidergic and Serotonergic Immunoreactivity in the Metamorphosing Ophiopluteus of Ophiactis resiliens (Echinodermata, Ophiuroidea), Invertebr. Biol., 2003, vol. 122, no. 2, pp. 177–185.

    Article  Google Scholar 

  24. Dupont, S., Thorndyke, W., Thorndyke, W., and Burke, R., Neural Development of the Brittlestar Amphiura filiformis, Dev. Genes Evol., 2009, vol. 219, pp. 159–166.

    Article  PubMed  Google Scholar 

  25. Hart, M., Life History Evolution and Comparative Developmental Biology of Echinoderms, Evol. Dev., 2002, vol. 4, no. 1, pp. 62–71.

    Article  PubMed  Google Scholar 

  26. Hirokawa, T., Komatsu, M., and Nakajima, Y., Development of the Nervous System in the Brittle Star Amphipholis kochii, Dev. Genes Evol., 2008, vol. 218, pp. 15–21.

    Article  PubMed  Google Scholar 

  27. Jangoux, M., Digestive Systems: Ophiuroidea, Echinoderm Nutrition, Rotterdam: A.A. Balkema Publishers, 1982, pp. 273–279.

    Google Scholar 

  28. Janies, D., Phylogenetic Relationships of Extant Echinoderm Classes, Can. J. Zool., 2001, vol. 79, no. 7, pp. 1232–1250.

    Article  CAS  Google Scholar 

  29. Kungurtzeva, L. and Dautov, S., Ultrastructure of Digestive Tract in the Ophiopluteus of Ophiura sarsi, Invert. Reprod. Dev., 2001, vol. 39, no. 3, pp. 209–220.

    Article  Google Scholar 

  30. Lacalli, Th., Mesodermal Pattern and Pattern Repeats in the Starfish Bipinnaria Larva, and Related Patterns in Other Deuterostome Larvae and Chordates, Phil. Trans. Roy. Soc. London, 1996, vol. 351, pp. 1737–1758.

    Article  Google Scholar 

  31. Lacalli, Th.C. and Kelly, S.J., Anterior Neural Centers in Echinoderm Bipinnaria and Auricularia Larvae: Cell Types and Organization, Acta Zool., 2002, vol. 83, pp. 99–110.

    Article  Google Scholar 

  32. Lacalli, Th., Gilmour, T., and West, J., Ciliary Band Innervation in the Bipinnaria Larva of Pisaster ochraceus, Phil. Trans. Roy. Soc. London, 1990, vol. 330, pp. 371–390.

    Article  Google Scholar 

  33. Nakajima, Y., Presence of a Ciliary Patch in Preoral Epithelium of Sea Urchin Plutei, Develop. Growth Differ., 1986, vol. 28, no. 3, pp. 243–249.

    Article  Google Scholar 

  34. Nakajima, Y., Burke, R., and Noda, Y., The Structure and Development of the Apical Ganglion in the Sea Urchin Pluteus Larvae of Strongylocentrotus droebachiensis and Mespilia globules, Develop. Growth Differ., 1993, vol. 35, no. 5, pp. 531–538.

    Article  Google Scholar 

  35. Nakajima, Y., Kaneko, H., Murray, G., and Burke, R.D., Divergent Patterns of Neural Development in Larval Echinoids and Asteroids, Evol. Dev., 2004, vol. 6, no. 2, pp. 95–104.

    Article  PubMed  Google Scholar 

  36. Nezlin, L. and Yushin, V., The Digestive Tract of the Echinopluteus of Echinocardium cordatum (Echinodermata, Echinoida): Its Ultrastructure and Innervation, Can. J. Zool., 1994, vol. 72, pp. 2090–2099.

    Article  Google Scholar 

  37. Ryberg, E., Development and Possible Function of the Red Pigment in Sea Urchin Larvae, Proc. of the European Colloquium on Echinoderms, Brussels, 3–8 September 1979, Rotterdam: A.A. Balkema, 1980, pp. 405–407.

    Google Scholar 

  38. Ryberg, E. and Lundgren, B., Some Aspects of Pigment Cells Distribution and Function in the Developing Echinopluteus of Psammechinus miliaris, Develop. Growth Differ., 1979, vol. 21, no. 2, pp. 129–140.

    Article  Google Scholar 

  39. Sato, Y., Kaneko, H., Negishi, S., and Yazaki, I., Larval Arm Resorption Proceeds Concomitantly with Programmed Cell Death During Metamorphosis of the Sea Urchin Hemicentrotus pulcherrimus, Cell Tissue Res., 2006, vol. 326, pp. 851–860.

    Article  PubMed  Google Scholar 

  40. Spiegel, E. and Howard, L., Development of Cell Junctions in Sea-Urchin Embryos, J. Cell Sci., 1983, vol. 62, pp. 27–48.

    PubMed  CAS  Google Scholar 

  41. Strathmann, R., Larval Feeding in Echinoderms, Am. Zool., 1975, vol. 1, pp. 717–730.

    Google Scholar 

  42. Takata, H. and Kominami, T., Behavior and Differentiation Process of Pigment Cells in a Tropical Sea Urchin Echinometra mathaei, Develop. Growth Differ., 2003, no. 45, pp. 473–483.

  43. Tokuoka, M., Setoguchi, C., and Kominami, T., Specification and Differentiation Processes of Secondary Mesenchyme-derived Cells in Embryos of the Sea Urchin Hemicentrotus pulcherrimus, Develop. Growth Differ., 2002, vol. 44, no. 3, pp. 239–250.

    Article  Google Scholar 

  44. Yaguchi, Sh., Yaguchi, J., and Burke, R., Specification of Ectoderm Restricts the Size of the Animal Plate and Patterns Neurogenesis in Sea Urchin Embryos, Development, 2006, vol. 133, pp. 2337–2346.

    Article  PubMed  CAS  Google Scholar 

  45. Yamashita, M., Embryonic Development of the Brittle-Star Amphipholis kochii in Laboratory Culture, Biol. Bull., 1985, vol. 169, pp. 131–142.

    Article  Google Scholar 

  46. Yokota, Y. and Sappington, T.W., Vitellogen and Vitellogenin in Echinoderm, Reproductive Biology of Invertebrates, Raikhel, A.S. and Sappington, T.W., Eds., vol.12, part A, 2001, pp. 200–221.

  47. Yokota, Y., Kato, K.H. and Mita, M., Morphological and Biochemical Studies on Yolk Degradation in the Sea Urchin Hemicentrotus pulcherrimus, Zool. Sci., 1993, vol. 10, pp. 661–670.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Gliznutsa.

Additional information

Original Russian Text © L.A. Gliznutsa, S.Sh. Dautov, 2011, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gliznutsa, L.A., Dautov, S.S. Cell differentiation during the larval development of the ophiuroid Amphipholis kochii Lütken, 1872 (Echinodermata: Ophiuroidea). Russ J Mar Biol 37, 384–400 (2011). https://doi.org/10.1134/S1063074011050051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074011050051

Keywords

Navigation