Skip to main content
Log in

Use of lipids for chemotaxonomy of octocorals (Cnidaria: Alcyonaria)

  • Biochemistry
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The relationship between taxonomic position and the lipid composition of octocorals from coastal waters of Vietnam was investigated. The principal component analysis of the total fatty acid (FA) composition of 64 coral specimens showed that total FAs are markers at the family level. A good distinction was obtained between antipatarians, gorgonians, and alcyonarians. Azooxanthellate corals of the genus Dendronephthya formed a separate group. The alcyonarian genera Sinularia, Lobophytum, and Sarcophyton were distinguished only by the composition of polyunsaturated FAs. The taxon-specific composition of FAs in octocorals is likely to be determined by differences in the nutrition of food sources, symbiont composition, and the enzymatic activity of FA biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Imbs, A.B., Dautov, S.Sh., and Latyshev, N.A. The Degree of Gonad Maturity and Eicosanoids in the Soft Coral Gersemia rubiformis, J. Evol. Biochim. Fiziol., 1989, vol. 25, pp. 307–311.

    Google Scholar 

  2. Imbs, A.B., Luu H.V., and Pham L.Q., Intra-and Interspecies Variability of the Fatty Acid Composition in Soft Corals, Biol. morya, 2007, vol. 33, no. 1, pp. 70–73.

    Google Scholar 

  3. Khotimchenko, S.V., Lipidy morskikh vodorosley-macrofitov i trav (Lipids of Marine Macrophytic Algae and Grasses), Vladivostok: Dalnauka, 2003.

    Google Scholar 

  4. Cham, N.L., Nguen H.Q., Stekhov, V.B., and Svetashev, V.I., Phospholipids and Fatty Acids in Gorgonarian Corals, Biol. morya, 1981, no. 6, pp. 44–47.

  5. Berge, J.P., and Barnathan, G., Fatty Acids from Lipids of Marine Organisms: Molecular Biodiversity, Roles as Biomarkers, Biologically Active Compounds, and Economical Aspects, Marine Biotechnology, Adv. Biochem. Eng. Biotechnol., Berlin: Springer, 2005, vol. 96, pp. 49–125.

    Google Scholar 

  6. Bligh, E.G. and Dyer, W.J., A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–918.

    PubMed  CAS  Google Scholar 

  7. Carballeira, N.M., Miranda, C., and Rodriguez, A.D., Phospholipid Fatty Acid Composition of Gorgonia mariae and Gorgonia ventalina, Comp. Biochem. Physiol. B., 2002, vol. 131, pp. 83–87.

    Article  PubMed  Google Scholar 

  8. Carreau, J.P. and Dubacq, J.P., Adaptation of Macro-Scale Method to the Micro-scale for Fatty Acid Methyl Transesterification of Biological Lipid Extracts, J. Chromatogr., 1978, vol. 151, pp. 384–390.

    Article  CAS  Google Scholar 

  9. Christie, W.W., Equivalent Chain Lengths of Methyl Ester Derivatives of Fatty Acids on Gas Chromatography—a Reappraisal, J. Chromatog., 1988, vol. 447, pp. 305–314.

    Article  CAS  Google Scholar 

  10. Dalsgaard, J., John, M.S., Kattner G. et al. Fatty Acid Trophic Markers in the Pelagic Marine Environment, Adv. Mar. Biol., 2003, vol. 46, pp. 225–340.

    Article  PubMed  Google Scholar 

  11. Dunstan, G.A., Brown, M.R., and Volkman, J.K., Cryptophyceae and Rhodophyceae; Chemotaxonomy, Phylogeny, and Application, Phytochemistry, 2005, vol. 66, pp. 2557–2570.

    Article  PubMed  CAS  Google Scholar 

  12. Fabricius, K. and Dommisse, M., Depletion of Suspended Particulate Matter over Coastal Reef Communities Dominated by Zooxanthellate Soft Corals, Mar. Ecol. Progr. Ser., 2000, vol. 196, pp. 157–167.

    Article  CAS  Google Scholar 

  13. Imbs, A.B., Demidkova, D.A., Latypov, Y.Y., and Pham, L.Q., Application of Fatty Acids for Chemotaxonomy of Reef-Building Corals, Lipids, 2007a, vol. 42, pp. 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  14. Imbs, A.B., Demina, O.A., and Demidkova, D.A., Lipid Class and Fatty Acid Composition of the Boreal Soft Coral Gersemia rubiformis, Lipids, 2006, vol. 41, pp. 721–725.

    Article  PubMed  CAS  Google Scholar 

  15. Imbs, A.B., Latyshev N.A., Zhukova, N.V., and Dautova, T.N., Comparison of Fatty Acid Compositions of Azooxanthellate Dendronephthya and Zooxanthellate Soft Coral Species, Comp. Biochem. Physiol. B., 2007b, vol. 148, pp. 314–321.

    Article  PubMed  Google Scholar 

  16. Imbs, A.B., Maliotin, A.N., Luu, V.H., and Pham, L.Q., Study of Fatty Acid Composition of 17 Coral Species of Vietnam, Vietnam. J. Sci. Technol., 2005, vol. 43, pp. 84–91.

    Google Scholar 

  17. Kaneda, T. Iso-Fatty and Anteiso-Fatty Acids in Bacteria? Biosynthesis, Function, and Taxonomic Significance, Microbiol. Rev., 1991, vol. 55, pp. 288–302.

    PubMed  CAS  Google Scholar 

  18. Leonard, A.E., Pereira, S.L., Sprecher, H., and Huang, Y.-S., Elongation of Long-Chain Fatty Acids, Progr. Lipid Res., 2004, vol. 43, pp. 36–54.

    Article  CAS  Google Scholar 

  19. Luu, V.H., Doan, L.P., Pham, L.Q., and Imbs, A.B., Fatty Acids as Chemotaxonomy of Vietnamese Coral, Vietnam, J. Sci. Technol., 2005, vol. 43, pp. 92–100.

    Google Scholar 

  20. Papina, M., Meziane T., and van Woesik, R., Symbiotic Zooxanthellae Provide the Host-Coral Montipora digitata with Polyunsaturated Fatty Acids, Comp. Biochem. Physiol. B, 2003, vol. 135, pp. 533–537.

    Article  PubMed  CAS  Google Scholar 

  21. Sorokin, Y.I., Coral Reef Ecology, Berlin: Springer, 1993.

    Google Scholar 

  22. Spencer, D.P., Effect of Daylight Variations on the Energy Budgets of Shallow-Water Corals, Mar. Biol., 1991, vol. 108, pp. 137–144.

    Article  Google Scholar 

  23. Sprecher, H., Metabolism of Highly Unsaturated n-3 and n-6 Fatty Acids, Biochim. Biophys. Acta, 2000, vol. 1486, pp. 219–231.

    PubMed  CAS  Google Scholar 

  24. Svetashev, V.I. and Vysotsky M.V., Fatty Acids of Heliopora coerulea and Chemotaxonomic Significance of Tetracosapolyenoic Acids in Coelenterates, Comp. Biochem. Physiol. B., 1998, vol. 119, pp. 73–75.

    Article  Google Scholar 

  25. Tocher, D.R., Leaver, M.J., and Hodgson, P.A., Recent Advances in the Biochemistry and Molecular Biology of Fatty Acyl Desaturases, Progr. Lipid Res., 1998, vol. 37, pp. 73–117.

    Article  CAS  Google Scholar 

  26. Volkman, J.K., Barrett, S.M., Blackburn, S.I. et al., Microalgal Biomarkers: a Review of Recent Research Developments, Org. Geochem., 1998, vol. 29, pp. 1163–1179.

    Article  CAS  Google Scholar 

  27. Vysotskii, M.V. and Svetashev, V.I., Identification, Isolation and Characterization of Tetracosapolyenoic Acids in Lipids of Marine Coelenterates, Biochim. Biophys. Acta, 1991, vol. 1083, pp. 161–165.

    PubMed  CAS  Google Scholar 

  28. Widdig, A. and Schlichter, D. Phytoplankton: a Significant Trophic Source for Soft Corals? Helgol. Mar. Res., 2001, vol. 55, pp. 198–211.

    Article  Google Scholar 

  29. Yamashiro, H., Oku, H., Higa, H. et al. Composition of Lipids, Fatty Acids and Sterols in Okinawan Corals, Comp. Biochem. Physiol. B, 1999, vol. 122, pp. 397–407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Imbs.

Additional information

Original Russian Text © A.B. Imbs, T.N. Dautova, 2008, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbs, A.B., Dautova, T.N. Use of lipids for chemotaxonomy of octocorals (Cnidaria: Alcyonaria). Russ J Mar Biol 34, 174–178 (2008). https://doi.org/10.1134/S1063074008030061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074008030061

Key words

Navigation