Skip to main content
Log in

Hydrothermal Synthesis of NaYF4:Yb,Er Upconversion Nanoparticles and Modification of Their Surfaces for Biosensing

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

NaYF4:Yb,Er upconversion nanoparticles are obtained via hydrothermal synthesis. To give nanoparticles hydrophilic properties without major changes in their photophysical characteristics, their surfaces have been modified by replacing the oleate shell with L-cysteine molecules. No fading of the luminescence of the modified upconversion nanoparticles is observed for months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Shen, J., Zhao, L., and Han, G., Adv. Drug Delivery Rev., 2013, vol. 65, p. 744.

    Article  CAS  Google Scholar 

  2. Gu, Z., Yan, L., Tian, G., et al., Adv. Mater., 2013, vol. 25, p. 3758.

    Article  CAS  PubMed  Google Scholar 

  3. Rosal, B. and Jaque, D., Methods Appl. Fluoresc., 2019, vol. 7, no. 2, p. 022001.

    Article  PubMed  ADS  Google Scholar 

  4. Li, H., Tan, M., Wang, X., et al., J. Am. Chem. Soc., 2020, vol. 142, p. 2023.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, W., Yi, J., Li, X., et al., Biosensors, 2022, vol. 12, p. 1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arai, M.S. and de Camargo, A.S.S., Nanoscale Adv., 2021, vol. 3, no. 18, p. 5135.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Lee, G. and Park, Y.I., Nanomaterials, 2018, vol. 8, p. 511.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang, L., Jin, D., and Stenze, M.H., Biomacromolecules, 2021, vol. 22, no. 8, p. 3168.

    Article  CAS  PubMed  Google Scholar 

  9. Li, H., Liu, J., Wang, Y., et al., Front. Chem., 2022, vol. 10, p. 996264.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. Shi, Z., Zhang. k., zada s. et al, ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 11, p. 12600.

    Article  CAS  PubMed  Google Scholar 

  11. Han, Y., An,Y., Jia, G., et al., Nanoscale, 2018, vol. 10, p. 6511.

    Article  CAS  PubMed  Google Scholar 

  12. Rafique, R., Kailasa, S.K., and Park, T.J., TrAC, Trends Anal. Chem., 2020, vol. 120, p. 115646.

    Article  Google Scholar 

  13. Zou, W.Q., Visser, C., Maduro, J.A., et al., Nat. Photonics, 2012, vol. 6, p. 560.

    Article  CAS  ADS  Google Scholar 

  14. Heer, S., Kömpe, K., Güdel, H.U., and Haase, M., Adv. Mater., 2004, vol. 16, p. 2102.

    Article  CAS  Google Scholar 

  15. Zharkov, D.K., Shmelev, A.G., Leontyev, A.V., et al., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 3, p. 241.

  16. Tu, D., Liu, Y., Zhu, H., et al., Angew. Chem., Int. Ed. Engl., 2013, vol. 125, p. 1166.

    Article  Google Scholar 

  17. Krämer, K.W., Biner, D., Frei, G., et al., Chem. Mater., 2004, vol. 16, p. 1244.

    Article  Google Scholar 

  18. Zheng, P. Liu, Q., et al., Nanomaterials, 2021, vol. 11, p. 2474.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wei, Z., Sun, L., Liu, J., et al., Biomaterials, 2014, vol. 35, p. 387.

    Article  CAS  PubMed  Google Scholar 

  20. Rabenau, A., Angew. Chem., Int. Ed. Engl., 1985, vol. 24, p. 1026.

    Article  Google Scholar 

  21. Sun, C., Schäferling, M., Resch-Genger, U., et al., Chem. Nano Mater., 2021, vol. 7, p. 174.

    CAS  Google Scholar 

  22. Shang, Y., Hao, S., Liu, J., et al., Nanomaterials, 2015, vol. 5, p. 218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding, M., Chen, D., Yin, S., et al., Sci. Rep., 2015, vol. 5, p. 12745.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Li, C. and Lin, J., J. Mater. Chem., 2010, vol. 20, p. 6831.

    Article  CAS  ADS  Google Scholar 

  25. Zeng, S., Ren, G., Xu, C., et al., Cryst. Eng. Commun., 2011, vol. 13, p. 1384.

    Article  CAS  Google Scholar 

  26. Ren, G., Zeng, S., and Hao, J., J. Phys. Chem. C, 2011, vol. 115, p. 20141.

    Article  CAS  Google Scholar 

  27. Wen, X., Yang, J., He, B., et al., Curr. Appl. Phys., 2008, vol. 8, p. 535.

    Article  ADS  Google Scholar 

Download references

Funding

Our spectroscopic study was supported by the Russian Science Foundation (project no. 23-42-10012, https://rscf.ru/project/23-42-10012/). The low-temperature measurements were made as part of a State Task for the Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Mityushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mityushkin, E.O., Zharkov, D.K., Leontyev, A.V. et al. Hydrothermal Synthesis of NaYF4:Yb,Er Upconversion Nanoparticles and Modification of Their Surfaces for Biosensing. Bull. Russ. Acad. Sci. Phys. 87, 1806–1811 (2023). https://doi.org/10.1134/S1062873823704105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704105

Keywords:

Navigation