Skip to main content
Log in

Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Acetate-capped hydrophilic cubic phase NaYF4:Yb/Er upconversion nanophosphors were effectively synthesized in a single step employing a facile microwave-assisted synthesis route by applying relatively low temperatures in a short span of time compared to the conventional synthetic methods. The nanoparticles having a size of about 25 nm exhibit good upconversion luminescence property and can be well dispersed in aqueous solvents as-synthesized. These upconversion nanoparticles were examined for their cytotoxicity and demonstrated to be an effective material for cancer cell imaging using near-infrared radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Peng J, Xu W, Teoh CL, Han S, Kim B, Samanta A, Er JC, Wang L, Yuan L, Liu X, Chang Y-T (2015) High-efficiency in vitro and in vivo detection of Zn2 + by dye-assembled upconversion nanoparticles. J Am Chem Soc 137(6):2336–2342. doi:10.1021/ja5115248

    Article  Google Scholar 

  2. Valero E, Fiorini S, Tambalo S, Busquier H, Callejas-Fernández J, Marzola P, Gálvez N, Domínguez-Vera JM (2014) In vivo long-term magnetic resonance imaging activity of ferritin-based magnetic nanoparticles versus a standard contrast agent. J Med Chem 57(13):5686–5692. doi:10.1021/jm5004446

    Article  Google Scholar 

  3. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–174. doi:10.1021/cr020357g

    Article  Google Scholar 

  4. Reddy KL, Rai M, Prabhakar N, Arppe R, Rai SB, Singh SK, Rosenholm JM, Krishnan V (2016) Controlled synthesis, bioimaging and toxicity assessments in strong red emitting Mn2 + doped NaYF4:Yb3 +/Ho3 + nanophosphors. RSC Adv 6(59):53698–53704. doi:10.1039/c6ra07106f

    Article  Google Scholar 

  5. Yan C, Dadvand A, Rosei F, Perepichka DF (2010) Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb, Er nanoheterostructures. J Am Chem Soc 132(26):8868–8869. doi:10.1021/ja103743t

    Article  Google Scholar 

  6. Boyer J-C, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal upconverting NaYF4: Er3 +/Yb3 + and Tm3 +/Yb3 + monodisperse nanocrystals. Nano Lett 7(3):847–852. doi:10.1021/nl070235+

    Article  Google Scholar 

  7. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463 (7284):1061–1065. http://www.nature.com/nature/journal/v463/n7284/suppinfo/nature08777_S1.html

  8. Boyer J-C, Carling C-J, Gates BD, Branda NR (2010) Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J Am Chem Soc 132(44):15766–15772. doi:10.1021/ja107184z

    Article  Google Scholar 

  9. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11(2):835–840. doi:10.1021/nl1041929

    Article  Google Scholar 

  10. Zhou L, Li Z, Liu Z, Yin M, Ren J, Qu X (2014) One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery. Nanoscale 6(3):1445–1452. doi:10.1039/c3nr04255c

    Article  Google Scholar 

  11. Chien Y-H, Chou Y-L, Wang S-W, Hung S-T, Liau M-C, Chao Y-J, Su C-H, Yeh C-S (2013) Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo. ACS Nano 7(10):8516–8528. doi:10.1021/nn402399m

    Article  Google Scholar 

  12. Zheng W, Zhou S, Chen Z, Hu P, Liu Y, Tu D, Zhu H, Li R, Huang M, Chen X (2013) Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection. Angew Chem Int Ed 52(26):6671–6676. doi:10.1002/anie.201302481

    Article  Google Scholar 

  13. Zhou J, Yu M, Sun Y, Zhang X, Zhu X, Wu Z, Wu D, Li F (2011) Fluorine-18-labeled Gd3 +/Yb3 +/Er3 + co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32(4):1148–1156. doi:10.1016/j.biomaterials.2010.09.071

    Article  Google Scholar 

  14. Ge X, Sun L, Ma B, Jin D, Dong L, Shi L, Li N, Chen H, Huang W (2015) Simultaneous realization of Hg2 + sensing, magnetic resonance imaging and upconversion luminescence in vitro and in vivo bioimaging based on hollow mesoporous silica coated UCNPs and ruthenium complex. Nanoscale 7(33):13877–13887. doi:10.1039/c5nr04006j

    Article  Google Scholar 

  15. Wang L, Liu J, Dai Y, Yang Q, Zhang Y, Yang P, Cheng Z, Lian H, Li C, Hou Z, Pa Ma, Lin J (2014) Efficient gene delivery and multimodal imaging by lanthanide-based upconversion nanoparticles. Langmuir 30(43):13042–13051. doi:10.1021/la503444g

    Article  Google Scholar 

  16. Zhai X, Lei P, Zhang P, Wang Z, Song S, Xu X, Liu X, Feng J, Zhang H (2015) Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes. Biomaterials 65:115–123. doi:10.1016/j.biomaterials.2015.06.023

    Article  Google Scholar 

  17. Qin Z, Du S, Luo Y, Liao Z, Zuo F, Luo J, Liu D (2016) Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@Mn2 + -doped NaYF4:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water. Appl Surf Sci 378:174–180. doi:10.1016/j.apsusc.2016.03.219

    Article  Google Scholar 

  18. Vedunova MV, Mishchenko TA, Mitroshina EV, Ponomareva NV, Yudintsev AV, Generalova AN, Deyev SM, Mukhina IV, Semyanov AV, Zvyagin AV (2016) Cytotoxic effects of upconversion nanoparticles in primary hippocampal cultures. RSC Adv 6(40):33656–33665. doi:10.1039/c6ra01272h

    Article  Google Scholar 

  19. Lu J, Chen Y, Liu D, Ren W, Lu Y, Shi Y, Piper J, Paulsen I, Jin D (2015) One-step protein conjugation to upconversion nanoparticles. Anal Chem 87(20):10406–10413. doi:10.1021/acs.analchem.5b02523

    Article  Google Scholar 

  20. Arppe R, Hyppanen I, Perala N, Peltomaa R, Kaiser M, Wurth C, Christ S, Resch-Genger U, Schaferling M, Soukka T (2015) Quenching of the upconversion luminescence of NaYF4:Yb3 + , Er3 + and NaYF4:Yb3 + , Tm3 + nanophosphors by water: the role of the sensitizer Yb3 + in non-radiative relaxation. Nanoscale 7(27):11746–11757. doi:10.1039/c5nr02100f

    Article  Google Scholar 

  21. Yang D, Dai Y, Ma P, Kang X, Cheng Z, Li C, Lin J (2013) One-step synthesis of small-sized and water-soluble NaREF4 upconversion nanoparticles for in vitro cell imaging and drug delivery. Chem A Eur J 19(8):2685–2694. doi:10.1002/chem.201203634

    Article  Google Scholar 

  22. Yang J, Shen D, Li X, Li W, Fang Y, Wei Y, Yao C, Tu B, Zhang F, Zhao D (2012) One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications. Chem A Eur J 18(43):13642–13650. doi:10.1002/chem.201202336

    Article  Google Scholar 

  23. Cui Y, Zhang C, Sun L, Hu Z, Liu X (2015) Simple and efficient synthesis of strongly green fluorescent carbon dots with upconversion property for direct cell imaging. Part Part Syst Charact 32(5):542–546. doi:10.1002/ppsc.201400221

    Article  Google Scholar 

  24. Cao T, Yang Y, Gao Y, Zhou J, Li Z, Li F (2011) High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 32(11):2959–2968. doi:10.1016/j.biomaterials.2010.12.050

    Article  Google Scholar 

  25. Xiong L-Q, Chen Z-G, Yu M-X, Li F-Y, Liu C, Huang C-H (2009) Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 30(29):5592–5600. doi:10.1016/j.biomaterials.2009.06.015

    Article  Google Scholar 

  26. Chen C, Sun L-D, Li Z-X, Li L-L, Zhang J, Zhang Y-W, Yan C-H (2010) Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir 26(11):8797–8803. doi:10.1021/la904545a

    Article  Google Scholar 

  27. Liu X, Zhao J, Sun Y, Song K, Yu Y, Du C, Kong X, Zhang H (2009) Ionothermal synthesis of hexagonal-phase NaYF4:Yb3 + , Er3 +/Tm3 + upconversion nanophosphors. Chem Commun 43:6628–6630. doi:10.1039/b915517a

    Article  Google Scholar 

  28. Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS (2014) Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces. Acc Chem Res 47(12):3481–3493. doi:10.1021/ar500253g

    Article  Google Scholar 

  29. Feng W, Dev KC, Zhengquan L, Yong Z, Xianping F, Minquan W (2006) Synthesis of polyethylenimine/NaYF 4 nanoparticles with upconversion fluorescence. Nanotechnology 17(23):5786

    Article  Google Scholar 

  30. Liu C, Wang Z, Jia H, Li Z (2011) Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. Chem Commun 47(16):4661–4663. doi:10.1039/c1cc10597c

    Article  Google Scholar 

  31. Han G-M, Jiang H-X, Huo Y-F, Kong D-M (2016) Simple synthesis of amino acid-functionalized hydrophilic upconversion nanoparticles capped with both carboxyl and amino groups for bimodal imaging. J Mater Chem B 4(19):3351–3357. doi:10.1039/c6tb00650g

    Article  Google Scholar 

  32. Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L-H (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er Infrared-to-Visible Up-Conversion Phosphors. Nano Lett 4(11):2191–2196. doi:10.1021/nl048680h

    Article  Google Scholar 

  33. Chan Y-C, Chen C-W, Chan M-H, Chang Y-C, Chang W-M, Chi L-H, Yu H-M, Lin Y-F, Tsai DP, Liu R-S, Hsiao M (2016) MMP2-sensing up-conversion nanoparticle for fluorescence biosensing in head and neck cancer cells. Biosens Bioelectron 80:131–139. doi:10.1016/j.bios.2016.01.049

    Article  Google Scholar 

  34. Yajuan S, Yue C, Lijin T, Yi Y, Xianggui K, Junwei Z, Hong Z (2007) Controlled synthesis and morphology dependent upconversion luminescence of NaYF 4:Yb, Er nanocrystals. Nanotechnology 18(27):275609

    Article  Google Scholar 

  35. Ehlert O, Thomann R, Darbandi M, Nann T (2008) A four-color colloidal multiplexing nanoparticle system. ACS Nano 2(1):120–124. doi:10.1021/nn7002458

    Article  Google Scholar 

  36. Zhu Y, Sun Z, Yin Z, Song H, Xu W, Wang Y, Zhang L, Zhang H (2013) Self-assembly, highly modified spontaneous emission and energy transfer properties of LaPO4:Ce3 + , Tb3 + inverse opals. Dalton Trans 42(22):8049–8057. doi:10.1039/c3dt50390a

    Article  Google Scholar 

  37. Wang G, Qin W, Wei G, Wang L, Zhu P, Kim R, Zhang D, Ding F, Zheng K (2009) Synthesis and upconversion luminescence properties of YF3:Yb3 +/Tm3 + octahedral nanocrystals. J Fluor Chem 130(2):158–161. doi:10.1016/j.jfluchem.2008.09.009

    Article  Google Scholar 

  38. Luo X-x, Cao W-h (2008) Ethanol-assistant solution combustion method to prepare La2O2S:Yb, Pr nanometer phosphor. J Alloy Compd 460(1–2):529–534. doi:10.1016/j.jallcom.2007.06.011

    Article  Google Scholar 

  39. Qin X, Yokomori T, Ju Y (2007) Flame synthesis and characterization of rare-earth (Er3 + , Ho3 + , and Tm3 +) doped upconversion nanophosphors. Appl Phys Lett 90(7):073104. doi:10.1063/1.2561079

    Article  Google Scholar 

  40. Dong B, Song H, Yu H, Zhang H, Qin R, Bai X, Pan G, Lu S, Wang F, Fan L, Dai Q (2008) Upconversion properties of Ln3 + doped NaYF4/polymer composite fibers prepared by electrospinning. J Phys Chem C 112(5):1435–1440. doi:10.1021/jp076958z

    Article  Google Scholar 

  41. Chan EM (2015) Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications. Chem Soc Rev 44(6):1653–1679. doi:10.1039/c4cs00205a

    Article  Google Scholar 

  42. Boyer J-C, Vetrone F, Cuccia LA, Capobianco JA (2006) Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3 + , Yb3 + and Tm3 + , Yb3 + via thermal decomposition of lanthanide trifluoroacetate precursors. J Am Chem Soc 128(23):7444–7445. doi:10.1021/ja061848b

    Article  Google Scholar 

  43. Zhang F, Li J, Shan J, Xu L, Zhao D (2009) Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties. Chem A Eur J 15(41):11010–11019. doi:10.1002/chem.200900861

    Article  Google Scholar 

  44. Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 14(5):582–596. doi:10.1016/j.cbpa.2010.08.014

    Article  Google Scholar 

  45. Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, He M, Li Z, Gao G, Gao B, Fu S, Cui D (2011) Folic acid-conjugated Silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32(36):9796–9809. doi:10.1016/j.biomaterials.2011.08.086

    Article  Google Scholar 

  46. Johnson NJJ, Sangeetha NM, Boyer J-C, van Veggel FCJM (2010) Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting [small beta]-NaYF4:Yb3 +/Er3 + nanoparticles. Nanoscale 2(5):771–777. doi:10.1039/b9nr00379g

    Article  Google Scholar 

  47. Xu L, Yu Y, Li X, Somesfalean G, Zhang Y, Gao H, Zhang Z (2008) Synthesis and upconversion properties of monoclinic Gd2O3:Er3 + nanocrystals. Opt Mater 30(8):1284–1288. doi:10.1016/j.optmat.2007.06.007

    Article  Google Scholar 

  48. Wang H-Q, Nann T (2009) Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 3(11):3804–3808. doi:10.1021/nn9012093

    Article  Google Scholar 

  49. Mi C, Tian Z, Cao C, Wang Z, Mao C, Xu S (2011) Novel microwave-assisted solvothermal synthesis of NaYF4:Yb, Er upconversion nanoparticles and their application in cancer cell imaging. Langmuir 27(23):14632–14637. doi:10.1021/la204015m

    Article  Google Scholar 

  50. Li F, Li C, Liu X, Chen Y, Bai T, Wang L, Shi Z, Feng S (2012) Hydrophilic, upconverting, multicolor, lanthanide-doped NaGdF4 nanocrystals as potential multifunctional bioprobes. Chem A Eur J 18(37):11641–11646. doi:10.1002/chem.201201309

    Article  Google Scholar 

  51. Li F, Li C, Liu X, Bai T, Dong W, Zhang X, Shi Z, Feng S (2013) Microwave-assisted synthesis and up-down conversion luminescent properties of multicolor hydrophilic LaF3:Ln3 + nanocrystals. Dalton Trans 42(6):2015–2022. doi:10.1039/c2dt32295a

    Article  Google Scholar 

  52. Wang T, Wang L, Feng Z, Cai L, Zhang L, He N (2015) Comparison of two methods for NaYF4: Yb, Er/Tm hydrophilic upconversion nanoparticles synthesis. J Bionanoscience 9(3):222–225. doi:10.1166/jbns.2015.1289

    Article  Google Scholar 

  53. Lim CS, Aleksandrovsky A, Molokeev M, Oreshonkov A, Atuchin V (2015) The modulated structure and frequency upconversion properties of CaLa2(MoO4)4:Ho3 +/Yb3 + phosphors prepared by microwave synthesis. Phys Chem Chem Phys 17(29):19278–19287. doi:10.1039/c5cp03054d

    Article  Google Scholar 

  54. Lim CS (2016) Microwave sol–gel derived NaCaGd(MoO4)3:Er3 +/Yb3 + phosphors and their upconversion photoluminescence properties. Infrared Phys Technol 76:353–359. doi:10.1016/j.infrared.2016.02.012

    Article  Google Scholar 

  55. Chen C, Li C, Zhao L, Liu X, Bai T, Huang H, Shi Z, Feng S (2015) A facile synthesis of water-soluble BaYF5:Ln3 + NCs with excellent luminescent properties as promising contrast agent for dual-modal bioimaging. Inorg Chem Commun 62:11–14. doi:10.1016/j.inoche.2015.10.020

    Article  Google Scholar 

  56. Zhao J, Zhu Y-J, Wu J, Chen F (2015) Microwave-assisted solvothermal synthesis and upconversion luminescence of CaF2:Yb3 +/Er3 + nanocrystals. J Colloid Interface Sci 440:39–45. doi:10.1016/j.jcis.2014.10.031

    Article  Google Scholar 

  57. Wang H, Nann T (2011) Monodisperse upconversion GdF3:Yb, Er rhombi by microwave-assisted synthesis. Nanoscale Res Lett 6(1):1–5. doi:10.1186/1556-276x-6-267

    Google Scholar 

  58. Ding M, Lu C, Ni Y, Xu Z (2014) Rapid microwave-assisted flux growth of pure β-NaYF4:Yb3 + , Ln3 + (Ln = Er, Tm, Ho) microrods with multicolor upconversion luminescence. Chem Eng J 241:477–484. doi:10.1016/j.cej.2013.10.045

    Article  Google Scholar 

  59. Som S, Das S, Yang C-Y, Lu C-H (2016) Enhanced upconversion of NaYF4:Er3 +/Yb3 + phosphors prepared via the rapid microwave-assisted hydrothermal route at low temperature: phase and morphology control. Opt Lett 41(3):464–467. doi:10.1364/ol.41.000464

    Article  Google Scholar 

  60. Wawrzynczyk D, Piatkowski D, Mackowski S, Samoc M, Nyk M (2015) Microwave-assisted synthesis and single particle spectroscopy of infrared down- and visible up-conversion in Er3 + and Yb3 + co-doped fluoride nanowires. J Mat Chem C 3(20):5332–5338. doi:10.1039/c5tc00468c

    Article  Google Scholar 

  61. Soukka T, Kuningas K, Rantanen T, Haaslahti V, Lövgren T (2005) Photochemical characterization of up-converting inorganic lanthanide phosphors as potential labels. J Fluoresc 15(4):513–528. doi:10.1007/s10895-005-2825-7

    Article  Google Scholar 

  62. Ito K, Bernstein HJ (1956) The vibrational spectra of the formate, acetate, and oxalate ions. Can J Chem 34(2):170–178. doi:10.1139/v56-021

    Article  Google Scholar 

  63. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2 + dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24(9):1226–1231. doi:10.1002/adma.201104741

    Article  Google Scholar 

  64. Han Y, Gai S, Pa Ma, Wang L, Zhang M, Huang S, Yang P (2013) highly uniform α-NaYF4:Yb/Er hollow microspheres and their application as drug carrier. Inorg Chem 52(16):9184–9191. doi:10.1021/ic4001818

    Article  Google Scholar 

Download references

Acknowledgement

VK acknowledge the financial support from Department of Science and Technology (DST), India under DST-INSPIRE faculty scheme. KLR is thankful to Ministry of Human Resource Development (MHRD), India, for research fellowship and Center for International Mobility (CIMO), Finland, for doctoral exchange fellowship. NP acknowledges the Doctoral Network for Materials Research at Åbo Akademi University and JMR the Academy of Finland (Projects #260599, 284542) for financial aid. The authors wish to thank Dr. Eudald Casals Mercadal for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jessica M. Rosenholm or Venkata Krishnan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.L., Prabhakar, N., Arppe, R. et al. Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging. J Mater Sci 52, 5738–5750 (2017). https://doi.org/10.1007/s10853-017-0809-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0809-z

Keywords

Navigation