Skip to main content
Log in

Effect of the Velocity of Rotation on the Constitutive Equations for Geomedia

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The author focuses on complex loading of a granular material at continuous rotation of the principal strain axes. The described testing procedure reveals the stress dependence on the relative velocity of rotation. It is possible to use the velocity of rotation of a unit volume relative to the velocity of rotation of the principal strain axes in the constitutive equations for a continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. Lurie, A.I., Nonlinear Theory of Elasticity, North Holland, 2012.

    Google Scholar 

  2. Trusov, P.V. and Keller, A.E., Teoriya opredelyayushchikh uravnenii. Kurs mekhaniki. Ch. 1. Obshchaya teoriya (Theory of Constitutive Equations. Course of Mechanics. Part I: General Theory), Perm: PGTU, 1997.

    Google Scholar 

  3. Truesdell, C. A First Course in Rational Continuum Mechanics, Academic Press, 2016.

    Google Scholar 

  4. Nikolaevsky, V.N., Review: The Earth’s Crust, Dilatancy and Earthquake, The Mechanics of Earthquake Rupture, Rice, J.R., Division of Engineering, Brown University, 1979.

  5. Nikolaevsky, V.N., Dilatancy and the Laws of Irreversible Soil Deformation, Osnovan., Fundament. Mekh. Gruntov, 1979, no. 5, pp. 29–31.

  6. Bobtyakov, A.P. and Revuzhenko, A.F., Uniform Displacement of a Granular Material. Dilatancy, Journal of Mining Science, 19892, vol. 18, no. 5, pp. 373–379.

    Article  Google Scholar 

  7. Stoyanov, S.S., Mekhanism formirovaniya razryvnykh zon (Mechanism of Rupture Zones), Moscow: Nedra, 1979.

    Google Scholar 

  8. Klishin, S.V., Discrete-Element Modeling of Strain Localization in Granular Medium in Passive Pressure Application to a Retaining Wall, Journal of Mining Science, 2021, vol. 57, no. 5, pp. 740–748.

    Article  Google Scholar 

  9. Sadovskaya, O.V. and Sadosvky, V.M., Mathematical Modeling in Mechanics of Granular Materials, Heidelberg, Germany: Springer, 2012.

    Book  Google Scholar 

  10. Bobryakov, A.P. and Lubyagin, A.V., Experimental Investigation into Unstable Slippage, Journal of Mining Science, 2008, vol. 44, no. 4, pp. 336–344.

    Article  Google Scholar 

  11. Bobryakov, A.P., Modeling Simulation of Deformation in a Blocky Geomedium during Origination of Earthquake, Journal of Mining Science, 2011, vol. 47, no. 6, pp. 722–729.

    Article  Google Scholar 

  12. Darwon, G.H., The Tides and the Kindred Phenomena in the Solar System, London: J. Murray, 1988.

    Google Scholar 

  13. Avsyuk, Yu.N., Prilivnye sily i prirodnye protsessy (Tidal Forces and Natural Processes), Moscow: OIFZ RAN, 1966.

    Google Scholar 

  14. Garetsky, R.G. and Dobrolyubov, A.I., Tidal Discrete Wave Motions and Continental Drifting, Geotektonika, 2006, no. 1, pp. 3–13.

  15. Garetsky, R.G. Dobrolyubov, A.I., Levkots, E.A., and Seredin, B.P., Discrete Wave Mechanism of Global Horizontal Displacements in Lithosphere, DAN BSSR, 1988, vol 32, no. 3, pp. 248–251.

  16. Revuzhenko, A.F., Prilivnye volny i napravellyi perenos mass Zemli (Tidal Waves and Directional Mass Transport in the Earth System) Novosibirsk: Nauka, 2013.

    Google Scholar 

  17. Nadai, A., Theory of Flow and Fracture of Solids, vol. 1, McGraw-Hill, 1950.

    Google Scholar 

  18. Revuzhenko, A.F. Mechanics of Granular Medium, Springer-Verlag Berlin Heidelberg, 2006.

    Google Scholar 

  19. Chandrasekhar, E. Ellipsoidal Figures of Equilibrium, New Have: Yale University Press, 1969.

    Google Scholar 

  20. Nevzglyadov, V.G., Teoriya tela odnorodnoi deformatsii i ee primenenie k yadernomu yadru (Uniform Deformation Body Theory and Applications in the Nuclear Core Field), Vladivostok: DalGU, 1970.

    Google Scholar 

  21. Lewandowski, M.J. and Stupkiewicz, S., Size Effects in Wedge Indentation Predicted by a Gradient-Enhanced Crystal–Plasticity Model, Int. J. Plasticity, 2017, vol. 98, pp. 54–78.

    Google Scholar 

  22. Liu, D. and Dunstan, D.J., Material Length Scale of Strain Gradient Plasticity: A Physical Interpretation, Int. J. Plasticity, 2017, vol. 98, pp. 156–174.

    Article  Google Scholar 

  23. Habib Pouriayevali and Bai-Xiang Xu, A Study of Gradient Strengthening Based on a Finite-Deformation Gradient Crystal–Plasticity Model, Continuum Mechanics and Thermodynamics, 2017, vol. 29, pp. 1389–1412.

    Article  Google Scholar 

  24. Aifantis, E.C., Internal Length Gradient (ILG) Material Mechanics Scales and Disciplines, J. Adv. Appl. Mech., 2016, vol. 49, pp. 1–110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Revuzhenko.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 1, pp. 3-11. https://doi.org/10.15372/FTPRPI20230101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revuzhenko, A.F. Effect of the Velocity of Rotation on the Constitutive Equations for Geomedia. J Min Sci 59, 1–7 (2023). https://doi.org/10.1134/S1062739123010015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123010015

Keywords

Navigation