Skip to main content
Log in

Comparison of Various Estimation and Simulation Methods for Orebody Grade Variations Modeling

  • GEOINFORMATION SCIENCE
  • Published:
Journal of Mining Science Aims and scope

Abstract

Estimation of iron ore grade distribution has been done using geostatistics and Artificial Neural Network (ANN) models for an iron ore body in Central Iran. The methods implemented include Ordinary Kriging (OK), Sequential Gaussian Simulation (SGS) and ANN. A comparison of the estimates from these techniques was done to investigate which method gives more accurate estimates

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Rezaei, A., Hassani, H., Moarefvand, P., and Golmohammadi, A., Investigation the Effect of Structural Pattern on Mineralization Model in the C-North Ore Deposit, Sangan, NE Iran, J. Min. Res. Eng. (JMRE), 2019, vol. 4(2), pp. 1–5.

    Google Scholar 

  2. Rezaei, A., Hassani, H., Moarefvand, P., and Golmohammadi, A., Grade 3D Block Modeling and Reserve Estimation of the C-North Iron Skarn Ore Deposit, Sangan, NE Iran, Global J. Earth Sci. Eng., 2019, vol. 6, pp. 23–37.

    Article  Google Scholar 

  3. Battalgazy, N. and Madani, N., Categorization of Mineral Resources Based on Different Geostatistical Simulation Algorithms: A Case Study from an Iron Ore Deposit, Nat. Res. Res, 2019, vol. 28, no. 4, pp. 1329–1351.

    Article  Google Scholar 

  4. Jafrasteh, B., Fathianpour, N., and Suarez, A., Comparison of Machine Learning Methods for Copper Ore Grade Estimation, Comput. Geosci., 2018, vol. 22, pp. 1371–1388.

    Article  Google Scholar 

  5. Afeni, T.B., Akeju, V.O., and Aladejare, A.E., A Comparative Study of Geometric and Geostatistical Methods for Qualitative Reserve Estimation of Limestone Deposit, Geoscience Frontiers, 2021, vol. 12, iss. 1, pp. 243–253.

    Article  Google Scholar 

  6. Ravenscroft, P.J., Recoverable Reserve Estimation by Conditional Simulation, Geological Society, London, Special Publications, 1992, vol. 63, pp. 289–298.

    Article  Google Scholar 

  7. Verly, G., Grade Control Classification of Ore and Waste: A Critical Review of Estimation and Simulation Procedures, Mathematical Geology, 2005, vol. 37, no. 5, pp. 451–475.

    Article  Google Scholar 

  8. Erarslan, K., Computer Aided Ore Body Modeling and Mine Valuation, In: Earth Sciences, Ed. Ahmad Dar, InTech, UK, 2012.

  9. Silva, D. and Almeida, J., Geostatistical Methodology to Characterize Volcanogenic Massive and Stockwork Ore Deposits, Miner., 2017, vol. 7, no. 12.

    Article  Google Scholar 

  10. Abdessattar, L., Dimitriy, N., and Messaoud, M., Geostatistical Modeling by the Ordinary Kriging in the Estimation of Mineral Resources on the Kieselguhr Mine, Algeria, IOP Conference Series: Earth and Environmental Sci., 2019. DOI:10.1088/1755-1315/362/1/012051.

    Article  Google Scholar 

  11. Sarkar, B.C. and Roy, I., A Geostatistical Approach to Resource Evaluation of Kala Iron Ore Deposit, Sundergarh Dist., Orissa, J. Geol. Soc. India, 2005, vol. 65, no. 5, pp. 553–561.

    Google Scholar 

  12. Taghvaeenezhad, M., Shayestehfar, M.R., Moarefvand, P., and Rezaei, A., Quantifying the Criteria for Classification of Mineral Resources and Reserves through the Estimation of Block Model Uncertainty Using Geostatistical Methods: A Case Study of Khoshoumi Uranium Deposit in Yazd, Iran, J. Geosystem Eng., 2020, vol. 23, pp. 216–225.

    Article  Google Scholar 

  13. Shayestehfar, M.R., Mohammadi, M., and Rezaei, A., Modeling, Ore Estimation and Preliminary Design of the Chromite Ore, Mine Six, Abdasht Esfandoghe Kerman, Iran, J. Economic Geology Iran, 2011, vol. 1, iss. 4, pp. 29–40.

    Google Scholar 

  14. Akeju, V.O. and Afeni, T.B., Investigation of the Spatial Variability in Oyo-Iwa Limestone Deposit for Quality Control, J. Eng. Sci. Technol., 2015, vol. 10, no. 8, pp. 1065–1085.

    Google Scholar 

  15. Chilès, J.P. and Delfiner, P., Geostatistics: Modeling Spatial Uncertainty, 2nd Ed., Wiley, New York, 2012. DOI: 10.1002/9781118136188.

    Book  Google Scholar 

  16. Tadeusiewicz, R., Neural Networks in Mining Sciences—General Overview and Some Representative Examples, Arch. Min. Sci., 2015, vol. 60, no. 4, pp. 971–984.

    Google Scholar 

  17. Jalloh, A., Sasaki, K., Jalloh, Y., and Barrie, A.K., The Integration Artificial Neural Networks and Geostatistical 3D Geological Block Modeling: A Case Study on a Mineral Sand Deposit, Proc. 24th Int. Min. Congress of Turkey, IMCET, 2016.

  18. Al-Alawi, S.M. and Tawo, E.E., A Comparison between Artificial Neural Network and a Geostatistical Technique in the Estimation of Regionalized Variables, Eng. J. Univ Qatar, 1999, vol. 12, pp. 125–149.

    Google Scholar 

  19. Dutta, S., Bandopadhyay, S., Ganguli, R., and Mishra, D., Machine Learning Algoritms and their Application to Ore Reserve Estimation of Sparse and Imprecise Data, J. Intell. Learn. Syst. Appl., 2010, vol. 2, pp. 86–96.

    Google Scholar 

  20. William, W.G., A Novel Application of Neural Networks for Instant Iron-Ore Grade Estimation, Expert. Syst. Appl., 2010, vol. 37, iss. 12, pp. 8729–8735.

    Article  Google Scholar 

  21. Nezamolhosseini, S.A., Mojtahedzadeh, S.H., and Gholamnejad, J., The Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit, Anal. Numer. Methods Min. Eng., 2017, vol. 6, pp. 73–83.

    Google Scholar 

  22. Torab, F.M., Geochemistry and Metallogeny of Magnetite-Apatite Deposits of the Bafq Mining District, Central Iran, Unpublished Ph. D. Thesis, Technical University of Clausthal, Clausthal, Germany, 2008.

  23. Isaaks, E.H. and Srivastava, R.M., An Introduction to Applied Geostatistics, Oxford University Press, New York, 1989.

    Google Scholar 

  24. Morshedy, H., Torabi, S.A., and Memarian, H., A New Method for 3D Designing of Complementary Exploration Drilling Layout Based on Ore Value and Objective Functions, Arab. J. Geosci., 2015, vol. 8, pp. 8175–8195.

    Article  Google Scholar 

  25. Krige, D.G., A Statistical Approach to Some Mine Valuations and Allied Problems at the Witwatersrand, University of Witwatersrand, Johannesburg, South Africa, 1951.

    Google Scholar 

  26. Almeida, J., Modelling of Cement Raw Material Compositional Indices with Direct Sequential Cosimulation, Eng. Geol., 2010, vol. 114, pp. 26–33.

    Article  Google Scholar 

  27. Deutsch, C.V., Geostatistical Reservoir Modeling, New York, Oxford University Press, 2002.

    Google Scholar 

  28. Leuangthong, O., Prins, C., and Deutsch, C.V., SGSIM_LVA: Gaussian Simulation with Locally Varying Angles, Center for Computational Geostatistics, 2006.

  29. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, 1999.

    Google Scholar 

  30. Allahkarami, E., Nuri, O.S., Abdollahzadeh, A., Rezai, B., and Chegini, M., Estimation of Copper and Molybdenum Grades and Recoveries in the Industrial Flotation Plant Using the Artificial Neural Network, Int. J. Nonferr. Metall., 2016, vol. 5, no. 3, pp. 23–32.

    Article  Google Scholar 

  31. Bishop, C.M., Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.

    Google Scholar 

  32. Jalloh, A.B., Sasaki, K., Jalloh, Y., and Barrie, A.K., Integrating Artificial Neural Networks and Geostatistics for Optimum 3D Geological Block Modeling in Mineral Reserve Estimation: A Case Study, Proc. 4th World Conference on Applied Sciences, Engineering & Technology, 24–26 October 2015, Kumamoto University, Japan.

  33. Plumb, A.P., Rowe, R.C., York, P., and Brown, M., Optimisation of the Predictive Ability of Artificial Neural Network (ANN) Models: A Comparison of Three ANN Programs and Four Classes of Training Algorithm, Eur. J. Pharm. Sci., 2005, vol. 25, nos. 4–5, pp. 395–405.

    Article  Google Scholar 

  34. Iraji, H., Mohammadi, M.A., Shakouri, B., and Meshram, S.G., Predicting Reservoir Volume Reduction Using Artificial Neural Network, Arabian J. Geosci., 2020, vol. 13.

    Article  Google Scholar 

  35. Rezaei, A., Hassani, H., Fard Mousavi, S.B., and Jabbari, N., Evaluation of Heavy Metals Concentration in Jajarm Bauxite Deposit in Northeast of Iran Using Environmental Pollution Indices, Malaysian J. Geosci., 2019, vol. 3, no. 1, pp. 12–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Mousavi.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2022, No. 1, pp. 182-191. https://doi.org/10.15372/FTPRPI20220119.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.J., Shayestehfar, M. & Moarefvand, P. Comparison of Various Estimation and Simulation Methods for Orebody Grade Variations Modeling. J Min Sci 58, 163–172 (2022). https://doi.org/10.1134/S1062739122010197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739122010197

Keywords

Navigation