Skip to main content
Log in

Temperature and Humidity Dependent MRAS Based Speed Estimation Technique for Induction Motor Used in Mine Ventilation Drive

  • MINE AEROGASDYNAMICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

This paper aims to encapsulate the trends in the variation of speed with real-time parameters, i.e., temperature and the corresponding change in humidity thereof for the underground mine ventilation system. The purpose mentioned above is fulfilled using a precise and vigorous estimation method of the speed for the sensorless induction motor drive (IMD). The developed model reference adaptive scheme (MRAS) speed estimator can be utilized to control the IM speed for the underground mine ventilation system based on the real-time parameters. The present work is on temperature and humidity-dependent MRAS based sensorless speed estimation technique for IM used in mine ventilation drives. This methodology has been tested analytically and experimentally using MATLAB/Simulink and LabVIEW-2013 laboratory interfaces. Furthermore, a statistically validated empirical relation between the temperature, humidity of the underground mine and speed of the ventilation system has also been developed to facilitate calculations of the same. However, implementing the proposed methodology in an actual underground mine remains a thing of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Moger, G.D., Murthy, Ch.S., and Udayakumar, R.U., Experimental Study on Energy Consumption of Wound Rotor Induction Motor in Mine Applications, Int. J. Eng. Sci. Innovative Technol., 2013, vol. 2, no. 5, pp. 363–369.

    Google Scholar 

  2. Lee, K., Rugge, R., Zheng, K., and Yang, B., Energy Saving HVAC System Modeling and Closed Loop Control in Industrial and Commercial Adjustable Speed Drives, Proc. of Energy Conversion Congress and Exposition (ECCE), Pittsburgh, USA, 2014.

  3. Krouse, P.C., Wasynczuk, O., and Sudhoff, S., Analysis of Electrical Machinery and Drive System, IEEE Press, 2004.

    Google Scholar 

  4. Schachter, N., Energy Efficient Speed Control Using Modern Variable Frequency Drives, CIMENTEC Eng. Ltd, pp. 1–8.

  5. Chuang, H.C., Chi, J., Chang, K., and Lee, C., Study on a Fan Coil Unit and Chiller by an Intelligent Control Method with a Stepless Variable Speed Driving Technology, Building and Environment, 2018, vol. 132, pp. 137–146.

    Article  Google Scholar 

  6. Magzoub, M., Saad, N., Ibrahim, R., and Irfan, M., An Experimental Demonstration of Hybrid Fuzzy-Fuzzy Space-Vector Control on AC Variable Speed Drives, Neural Computing and Applications, 2019, vol. 31, no. 2, pp. 777–792.

    Article  Google Scholar 

  7. Hannan, M., Ali, J., Mohamed, A., and Hussain, A., Optimization Techniques to Enhance the Performance of Induction Motor Drives: A Review, Renewable and Sustainable Energy Reviews, 2018, vol. 81, pp. 1611–1626.

    Article  Google Scholar 

  8. Chuang, H., Li, G., and Lee, C., The Efficiency Improvement of AC Induction Motor with Constant Frequency Technology, Energy, 2019, vol. 174, pp. 805–813.

    Article  Google Scholar 

  9. Moger, G.D., Murthy, C.S.N., and Kumar, R.Y.U., Energy Consumption of Mine Haulage Drive System in an Underground Coal Mine—A Case Study, Int. J. Emerging Technol. Advanced Eng., 2013, vol. 3, pp. 271–277.

    Google Scholar 

  10. Nie, X., Wei, X., Li, X., and Lu, C., Heat Treatment and Ventilation Optimization in a Deep Mine, Advances in Civil Eng., 2018, vol. 4, pp. 1–12.

    Article  Google Scholar 

  11. Toliyat, H.A. and Kliman, G.B., Handbook of Electric Motors, CRC Press, 2018.

    Book  Google Scholar 

  12. Kingeri, D.S., Introduction to Mine Ventilation Principles and Practices, U. S. Govt. Print. Off. Bull. 589, Washington, USA, 1960.

    Google Scholar 

  13. Schauder, C., Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers, IEEE Trans. Ind. Appl., 1992, vol. 28, no. 5, pp. 1054–1061.

    Article  Google Scholar 

  14. Babu, V.R., Maity, T., and Prasad, H., Energy Saving Techniques for Ventilation Fans Used in Underground Coal Mines—A Survey, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1001–1008.

    Article  Google Scholar 

  15. Mishra, G.B., Mine Environment and Ventilation, Calcutta, Oxford Univ. Press, 2013.

    Google Scholar 

  16. Hartman, H.L., Mutmansky, J.M., Ramani, R.V., and Wang, Y.J., Mine Ventilation and Air Conditioning, John Wiley & Sons, 2013.

    Google Scholar 

  17. Lawrence, M., The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications, Bull. Am. Meteorological Soc., 2005, vol. 86, no. 2, pp. 225–234.

    Article  Google Scholar 

  18. Chatterjee, A., Zhang, L., and Xia, X., Optimization of Mine Ventilation Fan Speeds according to Ventilation on Demand and Time of Use Tariff, Applied Energy, 2015, vol. 146, pp. 65–73.

    Article  Google Scholar 

  19. Babu, V.R., Maity, T., and Burman, S., Optimization of Energy Use for Mine Ventilation Fan with Variable Speed Drive, ICICPI, 2016, pp. 148–151.

  20. Shonin, O.B. and Pronko, V.S., Increasing Energy Efficiency of Mine Ventilation Systems via Multipurpose Control of a Main Fan Adjustable Speed Electric Drive, Mechanization, Electrification and Automation in Mines, 2013, vol. 56, pp. 163–169.

    Google Scholar 

  21. Orlowska-Kowalska, T. and Dybkowski, M., Stator-Current-Based MRAS Estimator for a Wide Range Speed-Sensorless Induction-Motor Drive, IEEE Trans. Industrial Electronics, 2009, vol. 57, no. 4, pp. 1296–1308.

    Article  Google Scholar 

  22. Arulmozhiyal, R. and Baskaran, K., Speed Control of Induction Motor Using Fuzzy PI and Optimized Using GA, Int. J. Recent Trends in Eng., 2009, vol. 2, no. 5, p. 43.

    Google Scholar 

  23. Mourougan, S. and Sethuraman, K., Hypothesis Development and Testing, J. Bus. Manag., 2017, vol. 19, pp. 34–40.

    Article  Google Scholar 

  24. Sinha, A.K., Das, S., and Chatterjee, T.K., Empirical Relation for Broken Bar Determination in SCIM, COMPEL Int. J. Comput. Math. Electric. Electron. Eng., 2018, vol. 37, no. 1, pp. 242–265.

    Article  Google Scholar 

  25. Camblor, P.M., On Correlated Z-Values Distribution in Hypothesis Testing, Comput. Statistics & Data Analysis, 2014, vol. 79, pp. 30–43.

    Article  Google Scholar 

  26. Maré, P., Novel Simulations for Energy Management of Mine Cooling Systems, Doctoral Dissertation, North-West University, South Africa, 2017.

  27. McPherson, M.J., Subsurface Ventilation and Environmental Engineering, Springer Science & Business Media, 2012.

  28. McPherson, M.J., Subsurface Ventilation Engineering, Springer, 2015.

  29. Saidur, R., Mekhilef, S., Ali, M.B., Safari, A., and Mohammed, H.A., Applications of Variable Speed Drive (VSD) in Electrical Motors Energy Savings, Renewable Sustainable Energy Reviews, 2012, vol. 16, no. 1, pp. 543–550.

    Article  Google Scholar 

  30. Acuña, E.I. and Feliú, A., Considering Ventilation on Demand for the Developments of the New Level Mine Project, El Teniente, Proc. 7th Int. Conf. Deep High Stress Min., Australian Centre for Geomechanics, 2014.

  31. Peng, W., Kunlei, Z., Jingxian, L., Yu, Z., and Changyan, S., Research and Application of Controlled Circulating Ventilation in Deep Mining, Proc. Eng., 2017, vol. 84, pp. 758–763.

    Article  Google Scholar 

  32. Babu, V.R., Maity, T., and Gupta, S., Adaptive Environment-Friendly Mine Ventilation Fan Speed Control Using PLC, J. Eng. Technol., 2017, vol. 6, no. 2, pp. 407–413.

    Google Scholar 

  33. Zucker, G., Sporr, A., Marijuan, A.G., Ferhatbegovic, T., and Hofmann, R., A Ventilation System Controller Based on Pressure Drop and CO2 Model, Energy Build., 2017, vol. 155, pp. 378–389.

    Article  Google Scholar 

  34. Demirel, N., Energy-Efficient Mine Ventilation Practices, Energy Efficiency in the Minerals Industry, Springer, 2018, pp. 287–299.

  35. Papar, R., Szady, A., Huffer, W.D., Martin, V., and McKane, A., Increasing Energy Efficiency of Mine Ventilation Systems, Engineering, 1999.

  36. Du Plessis, J.J.L., Marx, W.M., and Nell, C., Efficient Use of Energy in the Ventilation and Cooling of Mines, J. South. Afr. Inst. Min. Metall., 2014, vol. 114, no. 12, pp. 1033–1037.

    Google Scholar 

  37. Gy, J., Mine Ventilation Network Based on Cultural Particle Swarm Optimization Algorithm, J. Southeast University (Natural Science Edition), 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda Shankar Hati.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 5, pp. 150-159. https://doi.org/10.15372/FTPRPI20210514.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prince, Hati, A.S. Temperature and Humidity Dependent MRAS Based Speed Estimation Technique for Induction Motor Used in Mine Ventilation Drive. J Min Sci 57, 842–851 (2021). https://doi.org/10.1134/S1062739121050148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121050148

Keywords

Navigation