Skip to main content
Log in

Influence of Structural Features and Nature of Interaction between Minerals on the Selection of Methods for Lead-Bearing Ore Separation

  • Mineral Dressing
  • Published:
Journal of Mining Science Aims and scope

Abstract

The influence of structural characteristics and interaction parameters of minerals on separation method of lead-bearing complex ore in Russia is analyzed. Based on the studies of deep dissociation of minerals under disintegration using Mineral Liberation Analyzer (MLA), the quantitative distribution of mineral associations in grain-size categories is determined. From the data on mineral dissociation, the series of mineral associations, characteristic of complex ore from some deposits, are defined using milled samples of ore material. It is shown that galena associations with chalcopyrite, fahlore, secondary copper sulphides, sphalerite, pyrite and gangue mostly occur in finely dispersed aggregates with fahlore and, to a lesser degree, with other sulphides. The obtained series of mineral associations make it possible to determine the sequence of dissociation and separation of final-size minerals in the inter-cycle operations during flotation. The primary flotation concentrate contains fahlore, secondary copper sulphides, gold associations, galena and corroded pyrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zilberschmidt, M.G. and Isaev, V.A., Kompleksnoe ispol’zovanie mineral’nykh resursov (Comprehensive Utilization of Mineral Resources), vol. 1, Moscow: MISIS, 2016.

    Google Scholar 

  2. Classen, V.I. and Erenburg, V.V., Floatability of Different-Size Mineral Grains, Dokl. Akad. Nauk SSSR, 1951, no. 5, pp. 855.

  3. Mitrofanov, S.I., Barsky, L.A., and Samygin, V.D., Issledovanie rud na obogatimost (Investigation into Ore Dressability), Moscow: Nedra, 1981.

    Google Scholar 

  4. Kozlova, I.P., Specificity of Techniques to Process Complex Ores at Rubtsovsk Ore Preparation Plant, Proc. Conf. Development of High-Tech Plants in Mining Industry, Yekaterinburg, 2013, pp. 35–37.

    Google Scholar 

  5. Pshenichny, G.N., Fahlores of Southern Ural Sulfide Ore Deposits and Ways to Improve Ore Processing Parameters, in Tekhnologicheskaya mineralogiya promyshlennykh tipov mestorozhdenii (Technological Mineralogy of Production Deposits), Leningrad: Nauka, 1967, pp. 85–90.

    Google Scholar 

  6. Bocharov, V.A. Ignatkina, V.A., and Kayumov, A.A., Fractional Concentration Based on Size Mineral Distribution in Flotation Circuits for Bulk Non-ferrous Sulfide Ores, Tsv. Met., 2016, no. 6, pp. 21–28.

  7. Bocharov, V.A. and Ignatkina, V.A., Mineral Complex Separation in Processing of Rebellious Bulk Non-ferrous Metal Ores, Tsv. Met., 2014, no. 5, pp. 16–23.

  8. Plaksin, I.N. and Khazhinskaya, G.I., Influence of Granulometric Characteristics on Floatability of Sulfide Minerals, Izv. AN SSSR, Otdel Tech. Nauk, 1947, no. 6, pp. 37–45.

  9. Koptyaev, A.F. and Koryukhin, B.M., O zakonomernostyakh raskrytiya sul’fidov medi, zinka i zheleza pri obogashchenii medno-zinkovykh rud kolchedannykh mestorozhdenii Urala (Regularities in Dissociation of Copper, Zinc, and Iron Sulfides in Processing of Ural Copper-Zinc Sulfide Ores) Sverdlovsk: Unipromed, 1984, pp. 125–129.

    Google Scholar 

  10. Koryukin, B.M., Shtern, E.K., Semidalov, S.Yu., Koptyaev, A.S., and Filippova N.A., Vzaimosvyaz struktury i sostavasulfidov kolchedannykh mestorozhdenii s tekhnologiei ikh pererabotki (Interelaton between Structure and Composition of Sulfide Ore Deposits and Techniques for Their Processing), Leningrad: Mekhanobr, 1983, pp. 145–159.

    Google Scholar 

  11. Ma X. and Bruckard, W.J., Rejection of Arsenic Minerals in Sulfide Flotation—A Literature Review, Int. J. Miner. Process., 2009, vol. 93, pp. 89–94.

    Article  Google Scholar 

  12. Long, G., Peng, Y., and Bradshaw, D., Flotation Separation of Copper Sulphides from Arsenic Minerals at Rosebery Copper Concentrator, J. Min. Eng., 2014, no. 66–68, pp. 207–214.

  13. Bruckard, W.J., Sparrow, G.J., and Woodcock, J.T., A Review of the Effects of the Grinding Environment on the Flotation of Copper Sulphides, Int. J. of Mineral Processing, 2011, vol. 100, no. 1–2, pp. 1–13.

    Article  Google Scholar 

  14. Chen X. and Peng Y., The Effect of Regrind Mills on the Separation of Chalcopyrite from Pyrite in Cleaner Flotation, Minerals Engineering, 2015, vol. 83, pp. 33–43.

    Article  Google Scholar 

  15. Lin H.K., Walsh, D.E., Sonderland, S.H., Bissue, C., and Debrah, A., Flotability of Metallic Iron Fines from Comminution Circuits and their Effect on Flotation of a Sulfide Ore, Minerals and Metallurgical Proc., 2008, vol. 25, no. 4, pp. 206–210.

    Google Scholar 

  16. Bocharov, V.A., Ignatkina, V.A., and Kayumov, A.A., Fahl Ore Flotation, J. Min. Sci., 2015, vol. 51, no. 3, pp. 573–579.

    Article  Google Scholar 

  17. Bogdanov, O.S., Maximov, I.I., Podnek, A.K., Yanis, N.A., Teoriya i tekhnologiya flotatsii rud (Theory and Technology for Ore Flotation), Moscow: Nedra, 1990.

    Google Scholar 

  18. Abramov, A.A., Tekhnologiya pererabotki i obogashcheniya rud tsvetnykh metallov (Processing of Non-ferrous Metal Ores), vol. III, Book 1, 2, Moscow: MGGU, 2005, 2006.

    Google Scholar 

  19. Brion, D., Photoelectron Spectroscopic Study of the Surface Degradation of Pyrite (FeS2), Chalcopyrite (CuFeS2), Sphalerite (ZnS) and Galena (PbS) in Air and Water, Applied Surface Science, 1980, vol. 5, pp. 133–152.

    Article  Google Scholar 

  20. Peng, Y., Grano, S., Fornasiero, D., and Ralston, J., Control of Grinding Conditions in the Flotation of Chalcopyrite and its Separation from Pyrite, Int. J. of Mineral Processing, 2003, vol. 69, nos. 1–4, pp. 87–100.

    Article  Google Scholar 

  21. Glembotsky, V.A. and Dmitrieva, G.M., Vliyanie genezisa mineralov na ikh flotatsionnye svoistva (Influence of mineral genesis on their Flotation properties), Moscow: Nauka, 1965.

    Google Scholar 

  22. Mitrofanov, S.I., Selectivnaya flotatsiya (Selective Flotation), Moscow: Nedra, 1968.

    Google Scholar 

  23. Ignatkina, V.A. and Bocharov, V.A., Peculiarities in Flotation of Copper Sulfides and Sphalerite from Sulfide Ores, Gornyi Zhurnal, 2014, no. 12, pp. 75–79.

  24. Konev, V.A., Flotatsiya sulfidov (Sulfide Flotation), Moscow: Nedra, 1985.

    Google Scholar 

  25. Bakinov, K.G., Ionic Composition of the Pulp in Cyanide-Free Separation of Copper-Lead Concentrates, Mekhanobr Procedings, 1985, vol. 2, pp. 334–348.

    Google Scholar 

  26. Owusu, C., Brito e Abreu S., Skinner, W., Addai-Mensah, J., and Zanin M. The Influence of Pyrite Content on the Flotation of Chalcopyrite/Pyrite Mixtures, Minerals Engineering, 2014, vol. 55, pp. 87–95.

    Article  Google Scholar 

  27. Izoitko, V.M., Tekhnologicheskaya mineralogiya i otsenka rud (Technological Mineralogy and Ore Assessment), Saint Petersburg, Nauka, 1997.

    Google Scholar 

  28. Gonçalves K.L.C., Andrade V.L.L., and Peres A.E.C. The Effect of Grinding Conditions on the Flotation of a Sulphide Copper Ore, Minerals Engineering, 2003, vol. 16, pp. 1213–1216.

    Article  Google Scholar 

  29. Ignatkina, V.A. and Bocharov, V.A., Interaction of Components in Flotation Sulfide Pulp, Gornyi Zhurnal, 2007, no. 12, pp. 78–83.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ignatkina.

Additional information

Original Russian Text © V.A. Bocharov, V.A. Ignatkina, A.A. Kayumov, A.R. Makovetskas, Yu.Yu.Fishchenko, 2018, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2018, No. 5, pp. 133–143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharov, V.A., Ignatkina, V.A., Kayumov, A.A. et al. Influence of Structural Features and Nature of Interaction between Minerals on the Selection of Methods for Lead-Bearing Ore Separation. J Min Sci 54, 821–830 (2018). https://doi.org/10.1134/S1062739118054939

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739118054939

Keywords

Navigation