Skip to main content
Log in

Prediction of Basic Mechanical Properties of Tuffs Using Physical and Index Tests

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

The main objective of this experimental work is to determine the physico-mechanical properties of tuffs used as building stone and to investigate the relationships between basic mechanical properties (compressive strength, flexural tensile strength, loss of volume by abrasion and impact strength) as well as physical and index properties (apparent porosity, dry unit weight, water absorption, P-wave velocity, Brinell hardness and point load index) of tuffs which are relatively easy to implement and low cost. The rock type investigated in this study was tuffs. Statistical analyses were performed to correlate the different properties. The results show that there are good and satisfactory relationships between the mechanical and physical-index properties of tuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jumikis, A.R., Rock Mechanics, Series on Rock and Soil Mechanics, 1979.

  2. Torabi, S.R., Ataei, M., and Javanshir, M., Application of Schmidt Rebound Number for Estimating Rock Strength under Specific Geological Conditions, J. Min. Envir., 2011, vol. 1, no. 2, pp. 1–8.

    Google Scholar 

  3. Minaeian, B. and Ahangari, K., Estimation of Uniaxial Compressive Strength Based on P-wave and Schmidt Hammer Rebound Using Statistical Method, Arab. J. Geocsi., 2013, vol. 6, no. 6, pp. 1925–1931.

    Article  Google Scholar 

  4. Jamshidi, A., Nikudel, M.R., Khamehchiyan, M., Sahamieh R.Z., and Abdi, Y.A, Correlation between P-Wave Velocity and Schmidt Hardness with Mechanical Properties of Travertine Building Stones, Arab J. Geocsi., 2016, vol. 9, no. 10, p. 568.

    Article  Google Scholar 

  5. Kılıç, A. and Teymen, A., Determination of Mechanical Properties of Rocks Using Simple Methods, Bull Eng. Geol. Environ, 2008, vol. 67, no. 2, pp. 237–244.

    Article  Google Scholar 

  6. Sachpazis, C.I., Correlating Schmidt Hardness with Compressive Strength and Young’s Modulus of Carbonate Rocks, Bull. Int. Assoc. Eng. Geol., 1990, vol. 42, no. 1, pp. 75–83.

    Article  Google Scholar 

  7. Yilmaz, I. and Sendir, H., Correlation of Schmidt Hardness with Unconfined Compressive Strength and Young’s Modulus in Gypsum from Sivas (Turkey), Eng. Geol., 2002, vol. 66, no. 3, pp. 211–219.

    Article  Google Scholar 

  8. Turgul, A. and Zarif, I.H., Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Selected Granitic Rocks from Turkey, Eng. Geol., 1999, vol. 51, no. 4, pp. 303–317.

    Article  Google Scholar 

  9. Bruno, G., Vessia, G., and Bobbo, L., Statistical Method for Assessing the Uniaxial Compressive Strength of Carbonate Rock by Schmidt Hammer Tests Performed on Core Samples, Rock Mech. Rock Eng., 2013, vol. 46, no. 1, pp. 199–206.

    Article  Google Scholar 

  10. Karaman, K., and Kesimal, A., A Comparative Study of Schmidt Hammer Test Methods for Estimating the Uniaxial Compressive Strength of Rocks, Bull. Eng. Geol. Environ, 2015, vol. 74, no. 2, pp. 507–520.

    Article  Google Scholar 

  11. Yasar, E. and Erdogan, Y., Estimation of Rock Physicomechanical Properties Using Hardness Methods, Eng. Geol., 2004, vol. 71, no. 3–4, pp. 281–288.

    Article  Google Scholar 

  12. Koncagul, E.C. and Santi, P.M., Predicting the Unconfined Compressive Strength of the Breathitt Shale Using Slake Durability, Shore Hardness and Rock Structural Properties, Int. J. Rock Mech. Min. Sci., 1999, vol. 36, no. 2, pp. 139–153.

    Article  Google Scholar 

  13. Abd El Aal, A. and Kahraman, S. Indirect Methods to Predict the Abrasion Resistance and Slake Durability of Marbles, J. Mol. Eng. Mater., 2017, vol. 5, no. 2, 1750007–6.

    Article  Google Scholar 

  14. Heidari, M., Khanlari, G.R., Kaveh, M.T., and Kargarian, S., Predicting the Uniaxial Compressive and Tensile Strengths of Gypsum Rock by Point Load Testing, Rock Mech. Rock Eng., 2012, vol. 45, no. 2, pp. 265–273.

    Article  Google Scholar 

  15. Kahraman, S., Evaluation of Simple Methods for Assessing the Uniaxial Compressive Strength of Rock, Int. J. Rock Mech. Min. Sci., 2001, vol. 38, no. 7, pp. 981–994.

    Article  Google Scholar 

  16. Singh, T.N., Kainthola, A., and Venkatesh, A., Correlation between Point Load Index and Uniaxial Compressive Strength for Different Rock Types, Rock Mech. Rock Eng., 2012, vol. 45, no. 2, pp. 259–264.

    Article  Google Scholar 

  17. Azimian, A., Ajalloeian, R., and Fatehi, L., An Empirical Correlation of Uniaxial Compressive Strength with P-Wave Velocity and Point Load Strength Index on Marly Rocks Using Statistical Method, Geotech. Geol. Eng., 2014, vol. 32, no. 1, pp. 205–214.

    Article  Google Scholar 

  18. Kahraman, S., The Determination of Uniaxial Compressive Strength from Point Load Strength for Pyroclastic Rocks, Eng. Geol., 2014, vol. 170, pp. 33–42.

    Article  Google Scholar 

  19. Kaya, A. and Karaman, K., Utilizing the Strength Conversion Factor in the Estimation of Uniaxial Compressive Strength from the Point Load Index, Bull. Eng. Geol. Environ., 2016, vol. 75, no. 1, pp. 341–357.

    Article  Google Scholar 

  20. Singh, P.K., Tripathy, A., Kainthola, A., Singh, V., and Singh, T.N., Indirect Estimation of Compressive and Shear Strength from Simple Index Tests, Eng. with Comp., 2017, vol. 33, no. 1, pp. 1–11.

    Article  Google Scholar 

  21. Al-Osta, M.A., Ahmad, S., Khan, A.I., and Algadhib, A.H., Evaluation of Unconfined Compressive Strength of Carbonate Sedimentary Rocks in Saudi Arabia Using Indirect Tests, Arab. J. Geocsi., 2018, vol. 11, no. 12, p. 301.

    Article  Google Scholar 

  22. Abbas Abbaszadeh, S., Larsson, S., and Johansson, F., Updated Relations for the Uniaxial Compressive Strength of Marlstones Based on P-Wave Velocity and Point Load Index Test, Innovative Infrastructure Solutions, 2016, pp. 1–17.

  23. Kurtuluş, C., Sertçelik, F., and Sertçelik, I., Correlating Physico-Mechanical Properties of Intact Rocks with P-Wave Velocity, Acta Geodaetica et Geophysica, 2016, vol. 51, no. 3, pp. 571–582.

    Article  Google Scholar 

  24. Yagiz, S., P-Wave Velocity Test for Assessment of Geotechnical Properties of Some Rock Materials, Bull Mater. Sci., 2011, vol. 34, no. 4, pp. 947–953.

    Article  Google Scholar 

  25. Song, I., Suh, M., Woo, Y.K., and Hao, T., Determination of the Elastic Modulus of Foliated Rocks from Ultrasonic Velocity Measurements, Eng. Geol., 2004, vol. 72, no. 3–4, pp. 293–308.

    Article  Google Scholar 

  26. Sharma, P.K. and Singh, T.N., A Correlation between P-Wave Velocity, Impact Strength Index, Slake Durability Index and Uniaxial Compressive Strength, Bull. Eng. Geol. Environ, 2008, vol. 67, pp. 17–22.

    Article  Google Scholar 

  27. Diamantis, K., Bellas, S., Migiros, G., and Gartzos, E., Correlating Wave Velocities with Physical, Mechanical Properties and Petrographic Characteristics of Peridotites from the Central Greece, Geotech. Geol. Eng., 2011, vol. 29, no. 1, pp. 1049–1062.

    Article  Google Scholar 

  28. Altindag, R., Correlation between P-Wave Velocity and Some Mechanical Properties for Sedimentary Rocks, J. S Afr. Inst. Min. Metall., 2012, vol. 112, pp. 229–237.

    Google Scholar 

  29. Khandelwal, M., Correlating P-Wave Velocity with the Physico-Mechanical Properties of Different Rocks, Pure Appl. Geophys., 2013, vol. 170, pp. 507–514.

    Article  Google Scholar 

  30. Selçuk, L. and Nar, A., Prediction of Uniaxial Compressive Strength of Intact Rocks Using Ultrasonic Pulse Velocity and Rebound-Hammer Number Q, J. Eng. Geol. Hydrog., 2016, vol. 49, no. 1, pp. 67–75.

    Article  Google Scholar 

  31. Boutrid, A., Bensehamdi, S., and Chaib, R., Investigation into Brinell Hardness Test Applied to Rocks, W J. Eng., 2013, vol. 10, no. 4, pp. 367–380.

    Article  Google Scholar 

  32. Boutrid, A., Bensihamdi, S., Chettibi, M., and Talhi, K., Strength Hardness Rock Testing, J. Min. Sci., 2015, vol. 51, no. 1, pp. 95–110.

    Article  Google Scholar 

  33. Rajabzadeh, M.A., Moosavinasab, Z., and Rakhshandehroo, G., Effects of Rock Classes and Porosity on the Relation between Uniaxial Compressive Strength and Some Rock Properties for Carbonate Rocks, Rock Mech. Rock Eng., 2012, vol. 45, pp. 113–122.

    Article  Google Scholar 

  34. Jamshidi, A., Zamanian, H., and Zarei Sahamieh, R., The Effect of Density and Porosity on the Correlation between Uniaxial Compressive Strength and P-Wave Velocity, Rock Mech. Rock Eng., 2018, vol. 51, no. 4, pp. 1279–1286.

    Article  Google Scholar 

  35. Ercikdi, B., Karaman, K., Cihangir, F., Yilmaz, T., Aliyazicioglou, S., and Kesimal, A., Core Size Effect on the Dry and Saturated Ultrasonic Pulse Velocity of Limestone Samples, Ultrasonics, 2016, vol. 72, pp. 143–149.

    Article  Google Scholar 

  36. Hebib, R., Belhai, D., and Alloul, B., Estimation of Uniaxial Compressive Strength of North Algeria Sedimentary Rocks Using Density, Porosity, and Schmidt Hardness, Arab. J. Geocsi., 2017, vol. 10, no. 17, p. 383.

    Article  Google Scholar 

  37. Yavuz, H., Ugur, I., and Demirdag, S., Abrasion Resistance of Carbonate Rocks Used in Dimension Stone Industry and Correlations between Abrasion and Rock Properties, Int. J. Rock Mech. Min. Sci., 2007, vol. 45, no. 2, pp. 260–267.

    Article  Google Scholar 

  38. Karaca, Z., Günes Yilmaz, N., and Goktan, R.M., Abrasion Wear Characterization of Some Selected Stone Flooring Materials with Respect to Contact Load, Const. Build Mater., 2012, vol. 36, pp. 520–526.

    Article  Google Scholar 

  39. Goodman, R.E., Introduction to Rock Mechanics, 2nd Edition, New York, Wiley, 1989.

    Google Scholar 

  40. TSE 699. Methods of Testing for Natural Building Stones, Institute of Turkish Standards (TSE), Ankara, Turkey, 1987.

  41. ISRM 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics. In: Ulusay R., Hudson J. A., Ed., Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey, 2007.

  42. ASTM C 880-89. Standard Test Method for Flexural Strength of Dimensional Stone. Annual book of ASTM Standards, vol. 04.08, ASTM 1916, Race Street, Philedelphia, PA 19103-1187, USA, 1993.

  43. Şentürk, A., Gündüz, L., Tosun, Y.İ., and Sarıışık, A., and Mermer Teknolojisi, S.D., University, Isparta, Turkey, 1986.

  44. ASTM C 241-90. Standard Test Method for Abrasion Resistance of Stone Subjected to Foot Traffic, Annual Book of ASTM Standards, Ame Soc Testing Mater (ASTM), 1990.

  45. DIN 52108. Wear Testing of Inorganic, Nonmetallic Materials Using the Bohme Abrasive Wheel, Deutsches Institut Fur Normung, EV, 2002.

  46. Deere, D.U. and Miller, R.P., Engineering Classification and Index Properties for Intact Rock, Illinois University at Urbana Dept of Civil Engineering, 1966.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Teymen.

Additional information

Published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2018, No. 5, pp. 18–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teymen, A. Prediction of Basic Mechanical Properties of Tuffs Using Physical and Index Tests. J Min Sci 54, 721–733 (2018). https://doi.org/10.1134/S1062739118054820

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739118054820

Keywords

Navigation